C2C-CC Security Workshop

5 November 2009 VW, MobileLifeCampus Wolfsburg

Hervé Seudié Corporate Sector Research and Advance Engineering Robert Bosch GmbH

Vehicular On-board Security: EVITA Project

Outline

- 1. Project Scope and Objectives
- 2. Security Requirement Analysis
- 3. Hardware Security Modules as security anchor
- 4. Software Architecture
- 5. Summary & Outlook

Project Scope (1): Focus on in-vehicular systems

- Securing the external car2X communication:
 - Via wireless interface

- Goals: Prevention from attacks, Detection from attacks, Containment of attacks

- Securing the in-vehicular system infrastructure
 - via physical access
 - via wireless interface

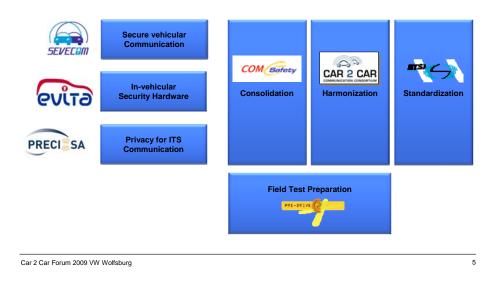
- Goals: Prevention from attacks, Detection from attacks, Containment of attacks

Car 2 Car Forum 2009 VW Wolfsburg

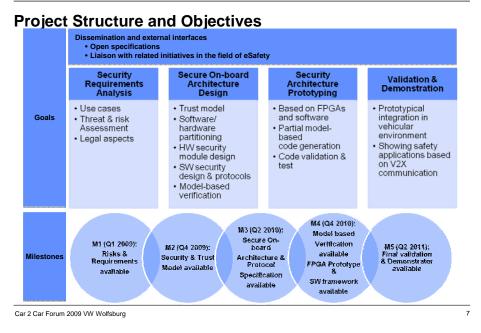
Vehicular On-board Security: EVITA Project

Project Scope (2): Focus on in-vehicular systems

- Targeting requirements of eSafety, eSecurity WG and C2C-CC



- Research on a secure on-board architecture:
 - Protection of high critical eSafety applications
 - Defining overall on-board security architecture for cooperative vehicles
- Software is not secure enough for tomorrow's cooperative eSafety applications:
 - Looking for appropriate SW and HW measures for ensuring security
 - Finding a suitable partitioning of SW and HW security
- Defining hardware co-processor:
 - Secure storage and processing of secret material
 - High throughput only possible with hardware acceleration


4

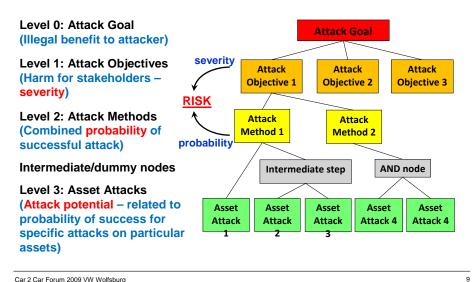
Car 2 Car Forum 2009 VW Wolfsburg

Project Scope (2): Complementary Security Activities

Vehicular On-board Security: EVITA Project

Security Requirement Analysis

Use Case Categories


- Car2MyCar, MyCar2Car, Car2I, I2Car
- Nomadic Devices, USB Sticks, MP3
- · Aftermarket Components, Diagnosis

• Risk and Threat analysis

- Risk associated with an attack is a function of:
 - severity of impact (i.e. harm to stakeholders)
 - probability of successful attack
 - for safety-related risks, **controllability** of hazardous situations needs to be considered
- Not possible to quantify severity and probability in many applications
- need to relate severity and probability to attack trees resulting from security threat analysis

Car 2 Car Forum 2009 VW Wolfsburg

Interpretation of attack trees

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Security severity classification – a 4-component vector

Class	Safety	Privacy	Financial	Operational
S0	No injuries.	No data access.	No financial loss.	No impact on operation.
S1	Light/moderate injuries.	Anonymous data only (no specific user or vehicle data).	Low level loss (~€10).	Impact not discernible to driver.
S2	Severe injuries (survival probable). Moderate injuries for multiple units.	Vehicle specific data (vehicle or model). Anonymous data for multiple units.	Moderate loss (~€100). Low losses for multiple units.	Driver aware. Not discernible in multiple units.
S3	Life threatening or fatal injuries. Severe injuries for multiple units.	Driver identity compromised. Vehicle data for multiple units.	Heavy loss (~€1000). Multiple moderate loss.	Significant impact. Multiple units with driver aware.
S4	Fatal for multiple vehicles.	Driver identity access for multiple units.	Multiple heavy losses.	Significant impact for multiple units.

Car 2 Car Forum 2009 VW Wolfsburg

Attack potential and probability

• Attack potential evaluation

- using established, structured approach from "Common Criteria"
- applied at asset attack level

• Indicative of attack probability (inverse relationship)

- numerical scale used to represent relative ranking of attack probability

Attack	c potential	Attack probability			
Rating	Description	Likelihood	Ranking		
0—9	Basic	Highly likely	5		
10–13	Enhanced basic	Likely	4		
14–19	Moderate	Possible	3		
20–24	High	Unlikely	2		
≥25	Beyond high	Remote	1		

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Sample asset attack ratings

Attack tree		Required atta	Asset-attack		
node	Asset (attack)	Value	Rating	probability	
[6.2.2.1]	GPS (jamming)	4	Basic	5	
[6.3.2.2], [9.1.1.1], [9.3.3.3],	Communications Unit (denial of service)	11	Enhanced- Basic	4	
[15.1.1], [15.2.1]	In-car User Hardware Interfaces (access)	15	Moderate	3	
[3.2.2.4.2.2], [4.3.2.1.2.2]	In-car Sensors (spoof)	24	High	2	
[8.3.1]	Environment Sensors (flash malicious code to firmware)	41	Beyond High	1	

Car 2 Car Forum 2009 VW Wolfsburg

Risk analysis – attack tree table

Attack Objective	Severity (S)	Attack Method	Risk level (R)	Combined attack method probability (A)	Asset (attack)	Asset-attack probability (P)
		Delay	R _s =R0 R _p =R0		9.1.1.2 Chassis Safety Controller (denial of service)	2
9.1 Delay active	S _s =0 S _n =0	computation	R _P =R0 R _F =R0 R ₀ =R3	4	9.1.1.1 Communications Unit (denial of service)	4
braking (e.g. by x ms)	$S_{S}=0$ $S_{P}=0$ $S_{F}=0$ $S_{O}=2$		R _s =R0		9.1.2.1 Wireless Communications (jamming)	5
		transmission	R _P =RO R _F =RO	5	9.1.2.2 Backbone Bus (jamming)	4
			R _O =R4		9.1.2.3 Chassis Safety Bus (jamming)	4

Sample risk analysis – attack active brake

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Prioritising security requirements

Requirements classified in terms of security properties that they represent

- confidentiality, privacy, availability, authenticity etc.

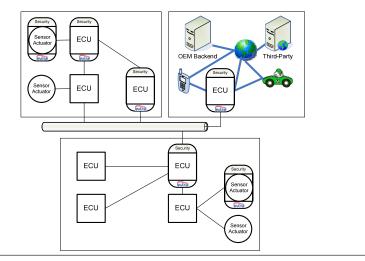
- · Requirements mapped to use cases, attack trees and asset attacks
- · Priority indicated by summary of risk analysis
 - collates results from risk assessment of all attack trees
 - organized by asset (what to protect) and attack type (how to protect it)
 mapped to groups of security requirements
 - identifies risk levels found from attack trees and the number of occurrences
- Interpretation
 - few instances and/or low risk suggest low priority for protection
 - high risk and/or many instances suggest higher priority for protection

Car 2 Car Forum 2009 VW Wolfsburg

Identified threats		Risk analysis results		Security requirements		
Asset	Attack	Risk level	Instances	Security requirements		
	Denial of service	1	3	Authenticity_6, Availability_102,		
Chassis	Demai of service	2	1	Availability_106		
Safety Controller	Exploit	4	1	Authenticity_1, Authenticity_2,		
Controller	implementation flaws	5	1	Authenticity_3		
		2	5	Confidentiality_1,		
		3	5	Confidentiality_2, Authenticity_101		
	Corrupt or fake	4	4			
Wireless	messages	5	1	Important to protect		
Comms		6	4	against this asset attack		
		7	3			
	lomming	4	3	Availability_107, Availability_108,		
	Jamming	5	2	Integrity_102		

Risk-based security requirement priorities

Car 2 Car Forum 2009 VW Wolfsburg


Vehicular On-board Security: EVITA Project

Vehicular On-board Architecture Requirements

• Integrity of hardware security module:

- Prevention/detection of tampering with hardware security modules
- Integrity and authenticity of in-vehicle software and data:
 - Unauthorized alteration of any in-vehicle software must be infeasible / detectable
- Integrity and authenticity of in-vehicular communication:
 - Unauthorized modification of data can be detected by the receiver
- Confidentiality of in-vehicular communication and data:
 - Unauthorized disclosure of confidential data sent or stored must be infeasible.
- Proof of platform integrity and authenticity to other (remote) entities:
 - Capability to prove the integrity and authenticity of its platform configuration
- Access Control to in-vehicle data and resources:
 - Enabling availability and well-defined access to all data and resources

Basic Idea: EVITA Overall On-Board Architecture

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Hardware Security Module as security anchor

Main goal

- Providing secure platform for cryptographic functionalities that support use cases

• Features

- Secure Storage
- HW Cryptographic Engines
- Secure CPU Core
- Scalable Security Architecture

Advantages

- Flexibility
- Extendability
- Migration Path from existing SW solutions

Car 2 Car Forum 2009 VW Wolfsburg

Hardware Security Module: Analysis

• HSM physically separate from CPU

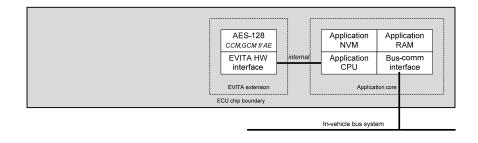
- Less secure than a single chip: connection between CPU and HSM not secure.
- Suitable for short-term designs or low-security applications with very small production runs
- Expensive: extra chip costs more due to the extra pins

· HSM in the same chip as the CPU but with a state machine

- More secure than external chip and more cost-effective
 Not flexible: Hardware structure not modifiable. Automotive microcontroller life cycle is more than 20 years
- Suitable for very high security applications with very short lifetimes
- Cryptographic applications will need to be implemented at the application CPU level: possible performance issues.
- Changing a state machine requires hardware redesign and is very expensive

• HSM in the same chip as the CPU but with a programmable secure core

- proposed solution
- Secure and cost-effective
- Flexible because of programmable core.
- Usable for other industries


Car 2 Car Forum 2009 VW Wolfsburg

19

Vehicular On-board Security: EVITA Project

Different topologies of HSM

• EVITA light version (Sensor/Actuator level)

Different topologies of HSM

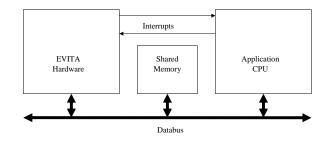
• EVITA Medium version (ECU Level)

	AES-PRNG with TRNG seed	Internal RAM 64 kB	Internal CPU Microblaze 32bit 100 MHz RISC			Application NVM	Application RAM
AES-128 Counters CCM,GCM I/AE 16x 64bit mo.		Internal NVM 512kB	EVITA HW interface	inte	mal	Application Bus-comm CPU interface	
Cryptographic	building block EVITA cryptog	Logic building block aphic boundary]		Applica	tion core
		E	ECU chip boundary				

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Different topologies of HSM

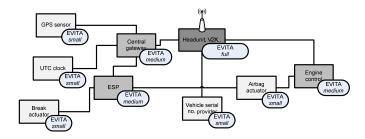

• EVITA Full version (ECU Level - V2X)

ECC-25 NIST FIPS 18	6-GF(p) 6-2 prime field	AES-PRNG with TRNG seed	Internal RAM 64 kB	Internal CPU Microblaze 32bit 100 MHz RISC			Application NVM	Application RAM
WHIRLPOOL AES-based hash	AES-128 CCM,GCM # AE	Counters 16x 64bit monot.	Internal NVM 512kB	EVITA HW interface	inter	internal Application CPU		Bus-comm interface
(Cryptographic building bloc	k	Logic buil	ding block	1			
EVITA cryptographic boun			dary				Applicat	ion core
			ECU chip be	oundary				

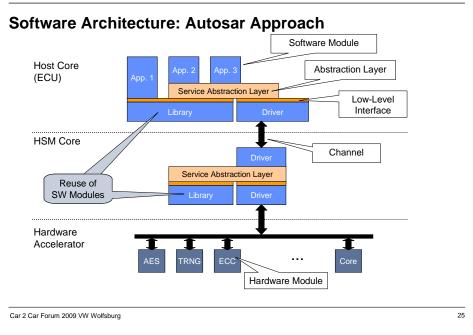
Car 2 Car Forum 2009 VW Wolfsburg

Hardware interface between HSM and application CPU

- HSM and application CPU has write/read rights for the Shared Memory
- Trigger through interrupt
- · Polling optional: periodically check of the result buffer




```
Car 2 Car Forum 2009 VW Wolfsburg
```


23

Vehicular On-board Security: EVITA Project

EVITA On-Board Architecture Deployment

Car 2 Car Forum 2009 VW Wolfsburg

Vehicular On-board Security: EVITA Project

Summary & Outlook

• Summary:

- Focus on securing in-vehicular applications and components
- Requirements analysis based on Standards: ISO 26262 & ISO/IEC (15408 & 18045)
- Design of a three-leveled HW architecture
- Design of a security software architecture based on AUTOSAR

• Outlook:

- Open specification of soft- and hardware design and protocols: Input for standardization
- Proof-of-concept by designing with formal methods and tools
- Prototypical implementation using the AUTOSAR stack CUBAS from Bosch
- Integration into a demonstrator

Car 2 Car Forum 2009 VW Wolfsburg

Thank you for your attention.

www.evita-project.org

Hervé Seudié Robert Bosch GmbH Corporate Sector Research and Advance Engineering Herve.seudie@de.bosch.com

Car 2 Car Forum 2009 VW Wolfsburg