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Kurzfassung 

Dieser Beitrag stellt Konzepte und Mechanismen zur Absicherung multifunktionaler 

Steuergeräte in Fahrzeugen vor. Insbesondere gilt es den Einsatz von vertrauenswürdigen, 

sicherheitskritischen Anwendungen neben Anwendungen mit einer geringeren 

Vertrauenswürdigkeit auf einer Plattform zu ermöglichen, ohne die Sicherheit der 

vertrauenswürdigen Anwendungen zu gefährden. Dazu wird in diesem Beitrag eine 

Sicherheitsarchitektur vorgestellt, die Anwendungen wirkungsvoll voneinander abschottet 

und einen sicheren Kommunikationsfluss gewährleistet. Die Architektur stellt weiterhin 

sicher, dass sicherheitskritische Anwendungen ausschließlich in vertrauenswürdigen 

Umgebungen voll funktionsfähig sind. Das bedeutet, dass Manipulationen an der 

Fahrzeugsoftware erkennbar sein müssen und nur Anwendungen in einem akzeptierten 

Zustand den Zugriff auf weitere Fahrzeugkomponenten erhalten dürfen.  

1. Introduction 

Current research activities in vehicular on-board IT architectures basically follow two key 

trends: unification of network communication and centralization of functionality. 

Recent on-board IT architectures comprise a very heterogeneous landscape of 

communication network technologies, e.g., CAN, LIN, FlexRay and MOST. Internet Protocol 

(IP) based communication is currently being researched as a technology for unifying the 

overall interconnection of ECUs in future on-board communication systems [14]. 

State-of-the art vehicular on-board architectures consist of up to 70 Electronic Control Units 

(ECU), which are interconnected via different bus communication systems. In order to 

substantiate economical aspects, such as vehicular weight reduction by saving ECU 

hardware resources or increasing maintainability, the trend is towards centralization of 

functionality. The centralization of single ECU functions on multipurpose ECUs allows for 

significant reduction of the overall number of in-vehicle ECUs and hence helps to mitigate the 



overall complexity [20]. Open standards and interfaces need to be created in order to create 

platforms, where software from different suppliers can be steadily integrated [19]. 

Besides these trends in the design of automotive on-board IT architectures, new external 

communication interfaces, fixed and wireless are becoming an integral part of on-board 

architectures. One key factor for this development is the integration of future e-Safety 

applications based on V2X1 communications [10,12] that have been identified as one 

promising measure for decreasing the number of fatal traffic accidents. In addition, user 

electronic devices, such as smartphones or music players are increasingly integrated in in-

vehicle infotainment systems. However, adding external interfaces to vehicular on-board 

architectures poses new security threats to these systems. Specifically safety applications 

need to be secured against malicious attacks [11]. 

Key security requirements of safety applications and safety related information are integrity, 

authenticity, and trustworthiness. Applying virtualization techniques on multipurpose ECUs 

support these security requirements, as this technology provides the separation of processes 

and applications, and hence allows for the execution of applications with different trust levels 

on the same ECU. As application domains with varying trust levels may communicate within 

the on-board network, it is reasonable to additionally provide respective security measures in 

order to control the information flow amongst such domains. We believe that the combination 

of virtualization and Trusted Computing technologies (e.g., based on Trusted Platform 

Modules [9]) provides the measures for meeting our discussed security requirements.  

An approach to provide a software and hardware security architecture will be the outcome of 

the EVITA project (E-safety Vehicle Intrusion proTected Applications) of the Seventh 

European Framework Program, which aims to design, verify, and prototype a security 

architecture for vehicular on-board networks, where all security-relevant components and 

sensitive information are protected against tampering and malicious manipulations [13]. 

Thus, EVITA implements the security technology for vehicular communication endpoints, 

enabling the security of safety applications, but also most other V2X communication 

applications (e.g., vehicular comfort, or business applications). 

 

                                                 

1 V2X is an abbreviation stands for any external vehicular communications such as Vehicle-to-Vehicle 

(V2V) or Vehicle-to-Infrastructure (V2I) communications. 



 
1.1 Our Contribution 

This paper specifically focuses on security aspects of communication between multipurpose 

ECUs based on virtualization technology, where applications can be securely isolated from 

each other. We propose a security architecture for multipurpose ECUs that is based on 

virtualization techniques and Trusted Computing technology. Instead of equipping each ECU 

running on a multipurpose ECU with additional security services, we introduce a dedicated 

security controller. This approach requires the ECUs to only implement minimal security 

services and, thus, easy migration of existing ECUs to our security architecture. The security 

controller operates in an isolated domain and is in charge of controlling the information flow 

between applications. Our security architecture enables communication within the on-board 

network as well as with external entities in a trustworthy manner by evaluating the integrity 

and trustworthiness of a sender. For this purpose, we present a security protocol used by the 

multipurpose ECUs in order to securely exchange data. We finally have implemented parts of 

our approach in a proof-of-concept prototype to ensure that our approach is feasible.  

1.2 Outline 

The remainder of this paper is organized as follows. In Section 2, we present background 

information about virtualization techniques and Trusted Computing technology our solution is 

based upon. Section 3 discusses the overall scenario we are considering and in Section 4, 

we present the architecture of our multipurpose ECUs. In Section 5, we show how we realize 

the integrity reporting in our multipurpose ECU architecture including the security protocols 

for message exchange. In Section 6, we present details about our proof-of-concept 

prototype. Finally, we conclude with Section 7. 

2. Background 

In this section, we present some background information about virtualization techniques and 

Trusted Computing technology. 

2.1 Virtualization  

Virtualization basically means realizing several runtime environments in parallel but strictly 

isolated on a shared hardware. Nowadays, virtualization is an accepted standard and is used 

in the desktop and server market as a genuine alternative solution to several individual 

dedicated hardware systems. Through today’s availability of modern and highly efficient 

virtualization solutions, virtualization becomes extremely interesting also for vehicular 

applications [3]. 



As depicted in Figure 1, the concept of virtualization is based on an additional abstraction 

layer, called the Virtual Machine Monitor (VMM) or hypervisor that is situated between the 

hardware layer and the operating system(s) or application(s). In practice, this abstraction 

layer can be realized in hardware, in software, or by a hardware/software combination. The 

main task of the VMM is to enable the sharing of the real physical resources with all existing 

runtime environments executed in parallel, called Virtual Machines (VM), without causing any 

resource conflicts or inconsistencies; in one word: to virtualize. The utilization of the 

virtualized hardware resources, in turn, has to be transparent for each VM in a way that it can 

be executed in almost the same manner as a single individual process on its dedicated 

hardware. The mutual strict isolation, the access control to all shared hardware resources 

and the control of the VMs itself is managed by the VMM. That means, the VMM implements 

all effective access policies for all communications, applications, and data as well as for all 

shared hardware resources. Therefore, the VMM is the actual crucial component in all 

virtualization concepts for realizing and enforcing the operational IT safety and the IT security 

as well. 

 

Figure 1: Structure of a virtualized IT Architecture 

As described in more detail in [3], the application of virtualization technologies for vehicular 

ECUs enables various benefits and advantages such as reduction of hardware costs, 

increased hardware efficiency, peak performance, flexibility, and interoperability as well as 

especially increased IT safety and IT security while enabling a multilevel-security and 

multilevel-safety per ECU architectures. 

 

 



2.2 Trusted Computing 

Trusted Computing technology as proposed by the Trusted Computing Group (TCG) [9] 

provides a set of basic security components and functionalities (e.g., isolated encryption) that 

form the base for a larger set of high-level security functions (e.g., platform integrity 

attestation) that can be built upon. Together with a secure operating system, Trusted 

Computing (TC) can be used to build an appropriate basis for security architectures with 

improved security especially for distributed and embedded applications that are executed 

also in "hostile environments". 

The following subsections introduce those TC functionalities, which are significant for the 

design of our security architecture for protection of multipurpose ECUs in vehicles, that 

means, (i) the Trusted Platform Module (TPM), (ii) the authenticated boot process, (iii) the 

sealing/binding functionality, and (iv) the remote attestation functionality. 

2.2.1 Trusted Platform Module 

The base of TC technology is the standardized Trusted Platform Module (TPM) that is 

considered to be a tamper-resistant hardware device similar to a smart-card and is assumed 

to be securely bound to the computing platform. The TPM is primarily used as a root of trust 

for integrity measurement and reporting and to secure all critical cryptographic operations (cf. 

following paragraphs). Current TPMs base on the open specification version 1.2 published by 

the Trusted Computing Group (TCG) [7,8,9]. The TPM hardware ensures that malicious 

software cannot compromise any cryptographic secrets since all security-critical operations 

such as key generations and decryption operations are done “on-chip”, so that secret keys 

do not have to leave the chip. 

2.2.2 Authenticated Boot 

During an authenticated boot process as proposed by the TCG, any code that will be 

executed is “measured” before execution concretely by calculating its cryptographic hash 

value. TC hardware is responsible for the secure storage and authentic provision of these 

measurement results. The hierarchical measurement chain (e.g., a hash chain) starts at the 

Core Root of Trust Measurement (CRTM), which has to be trusted a priori by all involved 

parties that want to evaluate the derived measurements. The CRTM is a small immutable 

(verifier) code implemented into the boot ROM or similar that is executed at first during the 

booting process. The step-by-step measuring and execution of the boot strap (starting at the 

CRTM) covers all consecutive layers that are part of the Trusted Computing Base (TCB). 

Upon completion of an authenticated boot process, these measurements reflect the 



configuration of the currently running hardware and software environment. TC technology, 

however, remains passive and hence does not (and cannot) prevent a certain (insecure) 

computing environment from being executed. 

 
2.2.3 Binding and Sealing 

A distinctive feature of TC hardware is the ability to not only use passwords as authorization 

(e.g., for a decryption operation with a specific TPM protected key), but also the integrity 

measurements determined during the authenticated boot process as described before. Thus, 

only a platform running a previously defined software or hardware configuration can be 

authorized to use a certain key. Moreover, the property that a certain key is “bound” to a 

platform configuration can be certified by the underlying TC hardware. This certification 

includes the integrity measurements that authorize a platform to employ the key. A remote 

party can verify the certificate and validate the embedded integrity measurements against 

“known good” reference configurations before encrypting data with the certified key. While 

the TC binding mechanism binds data only to a certain hardware/software configuration, the 

TC sealing mechanism additionally includes also always a linkage to the TPM’s unique 

identity (i.e., the Endorsement Key). Thus, sealing is mainly used for sealed storage, which 

means, to seal data of a device to itself. 

2.2.4 Remote Attestation 

The TC remote attestation functionality is used to report the actual platform hardware and 

software configuration to an external remote party. To guarantee integrity and freshness of 

the platform configuration reporting, the corresponding integrity measurement values and a 

fresh nonce provided by the remote party are digitally signed with an asymmetric key called 

Attestation Identity Key (AIK) that is linked to the unique identity of the TPM (i.e., the 

Endorsement Key) that is under the sole control of the TPM. A trusted third party called 

Privacy Certification Authority (Privacy CA) is used to guarantee the pseudonymity of the 

AIKs.  

3. Scenarios and Security Requirements 

The following section describes the underlying scenario for which our security solution has 

been designed for and derives the corresponding security requirements that have to be 

fulfilled. 

 



3.1 Scenarios 

We consider two different scenarios that are based on trends of on-board vehicular networks 

as described in the introduction. Within the first scenario, we presume the co-existence of 

multipurpose ECUs and common ECUs, whilst within the second scenario we consider an 

architecture where only multifunctional ECUs are deployed. The first scenario can be seen 

as a first step of evolution where not all ECUs are ported to multipurpose ECUs, but also 

self-contained, widely autonomous ECUs still exist in the on-board infrastructure. The next 

step in evolution could be that all ECUs are ported to multipurpose ECUs. 

Figure 2 shows a multipurpose ECU communicating with other common ECUs. The 

multipurpose ECU consists of a virtualization-supporting hardware platform, such as Intel’s 

Atom processor [18], a hypervisor for virtualizing the underlying hardware, and a number of 

virtual machines (VM). In addition, we assume an automotive-capable hardware-based trust 

anchor, such as the security module currently being designed and prototyped within the  

EVITA project [13]. For this reason we used in this proposal the TPM since it is currently the 

only available security module. Each VM is strongly isolated from other VMs and executes 

the software environment of a proprietary ECU. In addition, the hypervisor provides 

mechanisms such as virtual machine inspection that allows monitoring the ECU VMs. Hence, 

if it detects a state that is considered unsecure or untrusted, it can reset the VM to a known 

secure state. 

 

Figure 2: Multipurpose ECU communicating with other ECUs 

3.2 Security Requirements 

For the scenarios presented above, we define the following security requirements. 



o (SR. 1)  Mandatory communication control: Access control based on 

authentication, authorization, and integrity and trust verifications can be reliably 

enforced. 

o (SR. 2)  Secure communications: Confidentiality, integrity, authenticity, and 

freshness of in-vehicle and external communications can be reliably enforced. 

o (SR. 3)  Platform integrity enforcement: Integrity of in-vehicle ECU platforms can be 

reliably enforced or modified platform configurations can at least be reliably detected. 

o (SR. 4)  Strong runtime isolation: ECU applications can communicate or access 

each other’s data only over the specified interfaces. 

4. Security Architecture 

The following section describes the underlying security architecture and the security 

protocols for the integrity attestation of the ECUs. Figure 3 shows the overall architecture 

where multiple ECUs (applications) are running on a Virtual Machine Monitor (VMM). The 

VMM provides an abstraction to the underlying hardware and provides an isolated execution 

environment for each ECU (satisfying SR. 4). The VMM itself runs on a virtualization-

supporting hardware, which is for simplicity reasons not shown in this figure. The figure also 

shows the three storage locations and the resulting keys that protect access to this storage. 

The depicted components as well as the secure boot are described in the next subsections. 

 

Figure 3: Overall architecture of a multipurpose ECU 



 
4.1 Security Controller 

We propose a security controller which is responsible for validating the trust level of a VM 

and for controlling the communication between VMs and other ECUs. The security controller 

is a special purpose virtual machine and only one instance of a security controller can run on 

a multipurpose ECU.  All vehicle communication messages are forwarded over the security 

controller which decides and enforces whether a communication message is forwarded to 

the destination ECU and whether the message satisfies the required security properties 

(satisfying SR. 1). A communication message may for example include an integrity proof of 

the source ECU and can, thus, only be transmitted if this proof is authentic and the ECU is 

authorized for the requested action. For this purpose, the security controller includes a policy 

decision point (PDP) where a pre-defined policy specifies which ECUs are allowed to 

communicate with which ECUs and which security requirements the transmitted messages 

must satisfy (e.g., secure communication cf. SR. 2). The decision of the PDP is then 

enforced by the policy enforcement point (PEP) which drops a message, forwards a 

message or modifies a message (e.g., encrypts the message with the cryptographic key of 

the destination ECU) according to the policy. Besides deciding whether a message is 

forwarded or not, the security controller controls the access to the secure storage, where the 

virtual appliances of the virtual machines are stored. Thus, after the security controller has 

been executed, it unseals the virtual appliances from the secure storage and executes the 

virtual machine (see Section 4.2 for additional information). 

Formally, the protection state of a multipurpose ECU as protected by the security controller in 

time t is described using the matrix         which is modeled as follows:  

 

o        denotes the set of subjects whereas                 .  

o      denotes the set of objects. 

o        denotes the set of conditions             where a 

                    denotes that both            and             do not provide an integrity proof, 

i.e., they are not trusted. 

o       denotes the set of rights, for example,                                        .    

A matrix entry                           describes the set of rights that a subject            has on an 

object               at time t under a certain condition              . 



This model is then used to construct the access control matrix       , which is a three-

dimensional matrix. Examplarily assume that three ECUs (ECU1, ECU2, ECU3) are each 

located in a separate domain of one multipurpose ECU. ECU1 measures the distance to 

the vehicle ahead (e.g., by using radar waves) and transmits a message to ECU3 if the 

distance changes (comparable to the active cruise control (ACC) already integrated in 

modern vehicles). ECU3  is allowed to interfere with the speed control of the vehicle and 

can brake or accelerate the vehicle. However, since interfering with the speed control of 

the vehicle is a safety critical task, the trustworthiness of ECU1  must be ensured. Thus, 

ECU3 only accepts messages if ECU1 is in a provable and secure state. Vice versa, the 

driver can adjust the desired distance of the vehicle driving ahead using the Human 

Machine Interface (HMI) attached to ECU2. The delivered distance control message is not 

necessarily security critical and, thus, does not require an integrity proof. Please note that 

this is a very simple example use case and that even though that many vehicles already 

have comparable systems, it is not necessarily realized as described here. Table 1 and 

Table 2 examplary show how parts of the resulting matrix could look like.  

 
 Table 1: A very simple example policy for                   indicating that both subject and 

object do not provide an integrity proof. 

 

Table 2: A very simple example policy for                       indicating that both subject and 

object do provide an integrity proof. 

This concept enables the integration of untrusted and trusted applications on one 

multipurpose ECU. In addition, it prevents untrusted applications from inflicting damage to 



trusted applications, e.g., by injecting malicious messages, such as, malicious and non-

compliant brake commands. 

4.2 Virtual Machines 

A virtual machine (VM) represents the interface to the bare hardware constructed by the 

underlying hypervisor [2]. Each VM runs its own software environment often referred to as 

virtual appliances [4] that consist of a fully pre-installed and pre-configured application and 

operating system (OS). A virtual appliance is usually configured to host only a single 

application (the firmware of a particular ECU) and the included OS is adapted (i.e., 

minimized) to the essential application’s need. This approach allows for good efficiency and 

flexibility since existing and proprietary ECU hardware/software environments can easily be 

migrated into this new environment. 

Each time a new VM is created, a virtual TPM instance is initiated and pre-configured (cf. 

Section 4.3). The VM also provides an attestation service, which enables accessing the 

content of the platform configuration register and, thus, the secure reporting of its underlying 

integrity state to a remote entity.  

In order to reduce vulnerabilities, the VM distinguishes between program memory and data 

memory, similar to the Harvard architecture. The program memory holds the program 

machine code represented by a sequence of instructions and the data memory holds data 

that are related to the ECUs or security controller’s state. Any modifications to the program 

memory cannot be written back to the virtual appliance, meaning that each time before the 

VM spawns, its program memory is reverted to its initial state. Isolating program and data 

memory are realized through two different disk images. The secondary disk image is used to 

store state specific data. However, since data stored on the secondary disk image may be 

able to influence the runtime condition, only data that originates from the VM is stored there.  

 

Figure 4:  Secure boot mechanism actions taken when a multipurpose ECU spawns 

The actions taken when a VM spawns are shown in Figure 4 that includes the unsealing (cf. 

Section 2.2.3) of the virtual appliance (often also referred to as image) and the initialization of 



the VM’s virtual TPM. Booting a VM is triggered by the security controller which unseals the 

image of the VM from the secure storage and spawns a VM. Note that the creation of a 

vTPM instance requires unsealing of the vTPM storage using the SRK. As soon as the VM 

spawned, it can provide a vTPM signed certificate about its integrity state using the 

attestation service (cf. Section 5). 

 
4.3 Virtual TPM (vTPM) 

An important precondition for placing trust in a remote entity is the establishment of a 

complete integrity measurement chain from the hardware-based security anchor up to and 

including the top ECU application. The hardware TPM is virtualized by providing a virtual 

software TPM to every VM instance. This approach has firstly been introduced by Berger et 

al. [1] and we employ these concepts here. The advantages of using a virtual TPM in 

contrast to only using a hardware TPM are twofold: 

o First, it enables to generate a proof of the system configuration of the VM in a very 

small amount of time since the vTPM is a layer of software and, thus, does not 

possesses the same performance degradations as currently available hardware 

TPMs [6].  

o Second, multiple VMs running on a virtualization layer can attest their individual 

system configuration to other entities without publishing the configurations of other 

VMs executed in parallel. 

The persistent storage of a virtual TPM is located inside the virtual machine monitor, which in 

turn is protected by the hardware TPM. Thus, a vTPM-enhanced virtual machine cannot alter 

the storage of the vTPM. Each time a new VM is created, a virtual TPM instance is initiated 

with the sealed vTPM storage, and the PCRs 0-15 are filled with the PCR values from the 

underlying hardware TPM. Additionally, the hash value of the measured virtual appliance of 

the security controller (PCR16) and the hash value of the virtual appliance of the VM is 

stored in the virtual TPM (PCR17) as shown in Table 3. 

Platform Configuration 
Register (PCR) 

Content of TPM (Integrity 
Measurements) 

Content of vTPM (Integrity 
Measurements) 

0..7 CRTM and BIOS CRTM and BIOS 
8..15 Bootloader and VMM Bootloader and VMM 
16 Security Controller Security Controller 
17.. Empty Virtual appliance of the VM 

Table 3: Mapping of the PCR values 



 

In order to report the platform configuration of a VM, a strong binding between vTPM and 

TPM must exist. Otherwise, it would be possible for the vTPM to report PCR values to a 

remote entity that are different from the ones that were measured by the underlying hardware 

TPM. To prevent attacks of this type, we make use of a virtual attestation identity credential 

(vAIK) which is issued and certified by a valid attestation identity key (located inside the 

hardware TPM). This concept has been proposed in [5] and prevents using malicious or 

invalid vAIKs. However, usage of this vAIK is only necessary in the certification phase and 

not in the attestation phase where an ECU delivers messages to another ECU with an 

integrity proof (Cf. Section 5). 

 

5 Integrity Reporting and Attestation 

Our approach is based on a virtual TPM which is a layer of software and, hence, does not 

provide the same security level as a classic hardware TPM. Thus, the vTPM must be 

protected against tampering and be protected by the hardware TPM while allowing fast and 

secure integrity reporting. We achieve this objective by combining a secure boot with a 

concept that we call integrity stage checks. Integrity stage checks ensure that access to a 

particular component located on a specific stage is only possible if all checks that where 

primarily performed succeed.  

5.1 Secure Boot 

In addition to an authenticated boot mechanism as described in Section 2.2.2, we assume 

that integrity references are locally available that represent a valid ECU configuration. The 

secure boot process is also based on a security anchor that has to be trusted a priori by all 

parties that rely on the secure boot mechanism. As shown in Figure 5, the secure boot pro- 

 

 

 

 

Figure 5: Secure boot chain for integrity protection 

cess also memorizes all integrity measurements within the (hardware) protected security 

anchor for a potential later provision and evaluation. During the depicted secure boot process 



- starting at the security anchor - each component (a) first measures (e.g., by calculating its 

cryptographic hash value) the code of the component that will be executed next while (b) 

these measurements results are securely stored at the security anchor. The actual 

measurements then (c) can be verified for correctness by comparing them with the 

references values securely retrieved either directly from the security anchor or as part of the 

own configuration that has been successfully verified before. In case of a difference, an 

alarm can be raised, a pre-defined response can be executed (e.g., boot fail-safe from a 

ROM) or the boot process can be stopped at all. Finally, the measured and verified 

consecutive component is (d) executed and takes over control to extend the hierarchical 

integrity verification chain accordingly. In our case, the secure boot integrity verification 

consists at least from (1) the security anchor, (2) the bootloader, (3) the hypervisor (later 

denoted as virtual machine monitor), and (4) the VM bootloader of the security controller. 

In order to enable a flexible secure boot (e.g., for security updates), a secure reference 

update mechanism (e.g., based on a shared secret or a public key scheme) is required, 

which will not be covered here. 

 

5.2 Integrity Stage Checks 

Integrity stage checks ensure that when a specific stage has been successfully passed, the 

platform satisfies a set of specific security requirements associated to a specific stage, thus, 

satisfying SR. 3. Integrity stage checks complement the secure boot process described 

above by extending the secure boot process over the virtualization boundary and by applying 

more fine-granular checks. The integrity stage checks performed in our architecture are as 

follows:  

Integrity stage check 1: security controller 

The first integrity stage check is performed after successful execution of the security 

controller. For this purpose, the security controller’s virtual appliance is sealed to the 

PCR[0..15] using a key that resides in the hardware TPM, for instance the SRK as shown in 

Figure 3. The unsealing of the security controller is initiated by the secure boot which 

measures the VM bootloader and hands over control to the bootloader. The bootloader then 

unseals the virtual appliance of the security controller and spawns the security controller. As 

a result, the first integrity stage check can only be passed if PCR[0..15] are in a known state 

and the virtual appliance of the security controller can be decrypted.  

 



Integrity stage check 2: vTPM-storage 

The second integrity stage check can only be passed if the vTPM storage of a specific vTPM 

instance is in a known and authentic state. For this purpose, the vTPM storage is sealed to 

the PCR[0..16] of the hardware TPM using the SRK. Note that this approach requires 

updating and a resealing of the vTPM persistent storage each time new data, such as 

cryptographic keying material, is placed inside this secure storage of the vTPM.  

Integrity stage check 3: ECU specific attestation key 

If the preceding integrity stage checks have been successfully passed, the ECU has access 

to its own associated vTPM. The last integrity stage check is performed before an ECU is 

able to use his ECU specific key KECU. This key is bound to the virtual TPM’s PCR[0..17] 

and thus only usable if all previous checks succeed and the vTPM’s PCRs are the same as 

when KECU was initially bound to. In addition, access to this KECU is only possible if the 

security controller is running and, thus, is able to validate all in-vehicle messages originating 

in an ECU. 

5.3 Attestation Protocols 

To enable attestation, we divide into an initialization phase and an attestation phase. In this 

initialization phase, which is typically executed only once, the vTPM is equipped with a 

special key (KECU) which is later used for attestation and which is bound to the configuration 

of the VM. This key is then certified by a trusted party to ensure that the ECU’s configuration 

is known and trusted. The advantage of this concept is that an ECU is able to proof to 

another entity that it is trusted without requiring the other entity to perform complex 

computations in order to evaluate the trustworthiness of the ECU. 

5.3.1 Initialization Phase 

The certification protocol needs only be executed when the software configuration of the 

ECU changes. Its purpose is to generate a cryptographic key which directly identifies an 

ECU and is only usable if the software configuration is in the same state as this 

cryptographic key was initially bound to. The protocol for issuance of such a key and the 

corresponding certificate is described in the following, where V denotes a validator that is 

able to validate the platform integrity, e.g., the supplier of the ECU firmware, ECU is an ECU 

that wants to receive a certificate, and SC is the security controller. First, V must acquire 

(and validate) the certificate of the Privacy-CA to validate Cert(vAIK, KvAIK). The protocol can 

be executed over an insecure channel which allows for remotely updating and integrating 



new ECU components on a multipurpose hardware platform. The protocol is shown in the 

following: 

 

5.3.2 Attestation Phase 

After the successful initialization phase, the ECU is now in possession of KECU and the 

corresponding certificate. The key KECU can now be used to prove to another ECU that it is 

trusted, by simply signing a fresh message with this key. The advantage of this concept is 

that a verifier does only need to verify whether the certificate is valid, rather than parsing the 

whole measurement chain. 



 

6. Implementation 

The security controller has been partly prototypically implemented. We have implemented 

the secure startup of the security controller and access control functionality of the security 

controller based on policies which can be pre-configured per VM. The prototype uses IP-

based communication for communication between VMs. We have integrated the components 

of the security controller with XEN [17] version 3.2.1 on a standard PC with integrated TPM. 

Our access control model has been implemented in Java based on the XACML (eXtensible 

Access Control Markup Language) specification v1.1 [15] and integrated with Squid [16]. 

Squid intercepts the communication flow and requests a policy decision based on the 



XACML standard by the policy decision point, where a permit/deny decision is generated 

based on the configured policies and the security context. In our prototype, the security 

context comprises the source and destination IP address and the condition     (i.e., the trust 

level). The security context is collected by the policy information point and forwarded to the 

PDP according to the notion of the XACML standard. The described attestation protocol 

within this paper has yet not been fully implemented. 

The security controller image is encrypted with a symmetric key and needs to be decrypted 

using the corresponding key, which is sealed to the platform. Hence, the key is unsealed 

first, and then used to decrypt the image. We have performed measurements for the 

unsealing of the security controller image. First, the private key used for the unsealing 

process needs to be loaded to the TPM, then, the symmetric key can be unsealed, which is 

used for decrypting the security controller image. Unsealing this symmetric key on an Intel 

Core 2 Duo processor takes approx. 2,8 seconds. The decryption of the security controller 

using the unsealed key is finished after 3,6 seconds. This shows that the architecture is not 

feasible using a standard TPM and that a security chip with more computation power is 

required. 

7 Conclusion 

We have presented a security architecture that supports the deployment of applications with 

different trust levels on multipurpose ECUs by applying virtualization and Trusted Computing 

technology. The security architecture comprises a dedicated security controller which is in 

charge of controlling the communication flow between VMs on the same multipurpose ECU 

as well as the communication to external entities. This communication can be controlled by 

specifying a dedicated access control matrix. This matrix considers a set of conditions, e.g., 

trust for the generation of an access decision (permit/deny). We have proposed a protocol for 

efficiently issuing and exchanging trust statements within a vehicular on-board network, 

issued or enforced by a security controller. However, our proposed concept is also applicable 

for V2X communication scenarios. This security controller operates in a trusted isolated 

environment and enforces the policies discussed above. It is already feasible to deploy our 

approach in on-board architectures, where only one multipurpose ECU is available since it 

enables the secure integration of less trusted applications with trusted environments.  
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