Privacy and Data Protection for Drivers
A Contribution from the EVITA project

Dr. Timo Kosch
BMW Group Research and Technology
Hanauerstr. 46
80992 München, Germany
EVITA – Project Objectives and Achievements

Project partners

BMW Group
Research and Technology

BOSCH

Continental

escrypt
Embedded Security

EURECOM
Sophia Antipolis

Fraunhofer
ISI

Fujitsu

KATHOLIEKE UNIVERSITEIT
LEUVEN

MIRA

TELECOM ParisTech

TRIALOG
EVITA – Project Objectives and Achievements

Project Motivation:
Use Cases

- V2X Connectivity
 - Car2Car
 - Car2NearField
 - Car2TrafficInfrastructure
 - Car2MobileDevice
 - Car2Home
 - Car2Enterprise
 - Car2CustomerPortal
Threats

• Simulation
 – Simulation of 400 honest/good vehicles
 – Variable number of attackers randomly put in scenario

• Results
 – 3 attackers have hit already
 ≈ 20% honest/good vehicles
 – 10 attackers are able to interfere
 ≈ 50% of honest/good vehicles
Project Scope: Focus on in-vehicle systems

• The attacks on *external* communication:
 – must be prevented or
 – at least be detected and contained,
 – so that fake messages injected into the (wireless) communication infrastructure are properly identified and eliminated before influencing eSafety applications.

• Attacks on *in-vehicle* system infrastructure
 • via physical access or
 • via wireless interface
 – must be prevented or
 – at least be detected and contained,
 – so that fake messages are properly identified and eliminated before influencing applications.
Project Scope: Focus on in-vehicle systems

- Targeting requirements of eSafety eSecurity WG and C2C-CC
- Research on a secure on-board architecture:
 - Safeguard future cooperative eSafety applications
 - Tampering with cars can cause impact on other cars
- Software is not secure enough for tomorrow’s cooperative eSafety applications:
 - Looking for appropriate SW and HW measures for ensuring security
 - Finding a suitable solution using SW and HW security
 - Research on architecture (centralized vs. distributed)
 - Defining overall security architecture for cooperative vehicles
- Defining hardware co-processor:
 - Secure on-board and V2X communication
 - Secure storage and processing of secret material
 - Hardware security anchor
 - High throughput only possible with hardware acceleration
Project Scope: Complementary Security Activities

- Secure vehicular Communication
- In-vehicle Security Hardware
- Privacy for ITS Communication
- Consolidation
- Harmonization
- Standardization
- Field Test Preparation
Project Objectives

• Modular, (cost-) efficient security for:
 – In-vehicular devices: sensors, actuators, ECUs with
 – HW and SW architecture securing SW applications based on the HW modules

• in order to:
 – enforce ECU software protection against SW attacks
 – plus optional selected HW attacks depending on the level of HW tamper protection
 – provide ECU HW/SW-configuration attestation (reliable proof of setup)
 – support/process ECU to ECU communication protection
 – support/process V2X communication and privacy protection

• based on:
 – hardware based security anchors
 – software security layer, mechanisms and API specification
 – that make use of HW security module BUT can also be built completely in SW
EVITA – Project Objectives and Achievements

Item 1

Dissemination and external interfaces
- Open specifications
- Liaison with related initiatives in the field of eSafety

Security Requirements Analysis
- Use cases
- Threat & risk Assessment
- Legal aspects

Secure On-board Architecture Design
- Trust model
- Software/hardware partitioning
- HW security module design
- SW security design & protocols
- Model-based verification

Security Architecture Prototyping
- Based on FPGAs and software
- Partial model-based code generation
- Code validation & test

Validation & Demonstration
- Prototypical integration in vehicular environment
- Showing safety applications based on V2X communication

Milestones
- M1 (Q1 2009): Risks & Requirements available
- M2 (Q4 2009): Security & Trust Model available
- M4 (Q4 2010): Model based Verification available FPGA Prototype & SW framework available
- M5 (Q2 2011): Final validation & Demonstrator available
EVITA – Project Objectives and Achievements

Key Results of the 1st year

WP1000 Liaison Activities

- CAST Workshop in Darmstadt
- Working on Hardware Security strategy with HIS
- Planned Liaison Workshop November 5th/ Wolfsburg

WP2000 Security Requirement Engineering

- Use Cases:
 - Categorization into 6 fields
 - Detailed formal information flow
- Threat and Risk Analysis:
 - Threat identification based on attack trees
 - EVITA concept for risk assessment, based on
 - severity of an attack (based on ISO 26262)
 - probability of success (ISO/IEC 15408 & 18045)
- Security Requirements:
 - Formal and Semi-formal description

WP3000 Secure On-board Architecture Design and Verification

- First draft of Security and Trust Model:
 - Specification of a Meta-model for Trust and Security
 - Formal Security Refinement Process
- EVITA Architecture:
 - Design of a three-leveled HW architecture
 - Discussion on integration of EVITA library with AUTOSAR

WP4000 Security Architecture Implementation

- Defined and agreed on prototype hardware
- Defined and agreed on implementation tool chain
Basic Idea: EVITA Overall On-Board Architecture
General Structure of Hardware Security Module

• Main goal
 – Providing secure platform for cryptographic functionalities that support use cases

• Features
 – Secure Storage
 – HW Cryptographic Engines
 – Secure CPU Core
 – Scalable Security Architecture

• Advantages
 – Flexibility
 – Extendability
 – Migration Path from existing SW solutions
General Structure of Hardware Security Module

- **HSM physically separate from CPU**
 - Less secure than a single chip: connection between CPU and HSM not secure.
 - Suitable for short-term designs or low-security applications with very small production runs
 - Expensive: extra chip costs more due to the extra pins,

- **HSM in the same chip as the CPU but with a state machine**
 - More secure than external chip and more cost-effective
 - Not flexible: Hardware structure not modifiable. Automotive microcontroller life cycle is more than 20 years
 - Suitable for very high security applications with very short lifetimes
 - Implementing asymmetric cryptography using this structure requires large (and inflexible) multi-precision arithmetic hardware.
 - Cryptographic applications will need to be implemented at the application CPU level: possible performance issues.
 - Changing a state machine requires hardware redesign and is very expensive

- **HSM in the same chip as the CPU but with a programmable secure core**
 - Proposed solution
 - Secure and cost-effective
 - Flexible because of programmable core.
 - Usable for other industries
General Structure of Hardware Security Module

AES: Advanced Encryption Std.
RNG: Random Number Generator
TRNG: True RNG
PRNG: Pseudo RNG
MPA: Multi-Precision Arithmetic
SBusIF: System Bus Interface
PFlash: Program Flash
DFlash: Data Flash
EVITA – Project Objectives and Achievements

EVITA On-Board Architecture Deployment

ITS World Congress, 24 September 2009
Next Steps in Year 2

– Finalization of Security and Trust Model

– Finalization of EVITA Security Architecture

– EVITA Security Protocols

– Model based Verification

– Implementation
Thank you for your attention.

Benjamin Weyl
Chair WG Security & Middleware
www.car-2-car.org

timo.kosch@bmw.de
benjamin.weyl@bmw.de

BMW Group
Research and Technology

www.evita-project.org