EVITA-Project.org: <u>E</u>-Safety <u>V</u>ehicle <u>Intrusion Protected Applications</u>

7th escar Embedded Security in Cars Conference November 24–25, 2009, Düsseldorf

Dr.-Ing. Olaf Henniger, Fraunhofer SIT Darmstadt

Hervé Seudié, Robert Bosch GmbH

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Presentation outline

- · Project overview
- Overview of technical work packages
 - Security requirements engineering
 - Secure on-board architecture design
 - Security architecture implementation
 - Prototype-based demonstration
- Summary and outlook

Administrative project details

3

- Programme
 - FP7-ICT-2007 of the European Community
- Research Area
 - ICT-2007.6.2 ICT for Cooperative Systems
- Funding scheme
 - Collaborative project
- Budget / Funding from European Community - €6,022,807 / €3,825,993
- Start date / End date / Duration
 - 1 July 2008 / 30 June 2011 / 36 months
- Coordinator
 - Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
- Project Website
 - http://www.evita-project.org

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

EVITA project objectives

Objectives

- To design, verify, and prototype a secure architecture for automotive on-board electronics networks.
- Motivation
 - In-vehicle IT security (trust anchor, secure storage of secret keys etc.) is required as a basis for secure inter-vehicular communication.
- Approach
 - Hardware security modules at root of trust.
 - Open specifications

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA project partners

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Presentation outline

- · Project overview
- · Overview of technical work packages
 - Security requirements engineering
 - Secure on-board architecture design
 - Security architecture implementation
 - Prototype-based demonstration
- · Summary and outlook

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Security requirements engineering – Overview

- · Description of system under investigation and use cases
- Identification of IT security threats
- · Identification of IT security requirements to counter the threats
- Assessment of the risks associated with the threats and prioritization of the IT security requirements based on the risks addressed
- · Analysis of legal requirements

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Assumed automotive on-board network architecture

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Use case categories

- · Vehicle-to-vehicle and vehicle-to-infrastructure communication
- Use of nomadic devices, USB sticks, or MP3 devices
- · Aftermarket and workshop/diagnosis

Possible attack goals

- To gain advantages or just to harm others e.g. by
 - enhancing traffic privileges (like forcing green lights ahead),
 - fraudulent commercial transactions (like manipulating toll bills),
 - hoaxes (like unauthorized active braking),
 - avoiding liability for accidents,
 - information theft,
 - identity theft

7th escar Embedded Security in Cars Conference, November 24-25, 2009

11

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Example attack tree

7th escar Embedded Security in Cars Conference, November 24-25, 2009

IT security requirements

- · Say what needs to be protected, but not how
- Based on compact functional models derived from use case descriptions, independent from implementation
- Main approach
 - Incoming data and their origins shall be authentic.
 - Outgoing data shall be confidential to an appropriate level.

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Summary of security requirements

Integrity of hardware security module

- Prevention/detection of tampering with hardware security modules
- · Integrity and authenticity of in-vehicle software and data
 - Unauthorized alteration of any in-vehicle software must be infeasible / detectable
- · Integrity and authenticity of in-vehicular communication
 - Unauthorized modification of data must be detectable by the receiver
- · Confidentiality of in-vehicular communication and data
 - Unauthorized disclosure of confidential data sent or stored must be infeasible.
- · Proof of platform integrity and authenticity to other (remote) entities
 - Capability to prove the integrity and authenticity of its platform configuration
- Access Control to in-vehicle data and resources
 - Enabling availability and well-defined access to all data and resources

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Risk analysis

- Risk associated with an attack is a function of:
 - Severity of impact (i.e. harm to stakeholders)
 - Probability of successful attack
- · Not possible to quantify severity and probability in many applications
 - but qualitative rankings allow relative severity, probability and risk to be identified

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Security threat severity classification

Class	Safety	Privacy	Financial	Operational
S0	No injuries.	No data access.	No financial loss.	No impact on operation.
S1	Light/moderate injuries.	Anonymous data only (no specific user or vehicle).	Low level loss (~€10).	Impact not discernible to driver.
S2	Severe injuries (survival probable). Moderate injuries for multiple units.	Vehicle specific data (vehicle or model). Anonymous data for multiple units.	Moderate loss (~€100). Low losses for multiple units.	Driver aware. Not discernible in multiple units.
S3	Life threatening or fatal injuries. Severe injuries for multiple units.	Driver identity compromised. Vehicle data for multiple units.	Heavy loss (~€1000). Multiple moderate losses.	Significant impact. Multiple units with driver aware.
S4	Fatal for multiple vehicles.	Driver identity access for multiple units.	Multiple heavy losses.	Significant impact for multiple units.

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Attack potential and probability of success

Attack potential

Descrip-

tion

Basic

Enhanced

basic

Moderate

High

Beyond

high

Rating

0–9

10-13

14–19

20-24

≥25

Attack potential

- corresponds to the minimum effort required to create and carry out an attack
- evaluation using established structured approach from "Common Criteria" taking into account the required
 - time, expertise, knowledge of system, window of opportunity, and equipment

• Indicative of probability of success

- Inverse relationship: Easy attacks more likely to be successful than difficult ones.
- Numerical scale used to represent relative ranking of probability of success

7th escar Embedded Security in Cars Conference, November 24-25, 2009

17

Probability of success

Ranking

5

4

3

2

1

Likeli-

hood

Highly

likely

Likely

Possible

Unlikely

Remote

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Sample asset attack ratings

Attook	Required	attack potential	Probability of
Attack	Value	Rating	success
Forward brake message from other neighbourhood	8	Basic	5
GPS spoofing	11	Enhanced-Basic	4
Access in-car interfaces	14	Moderate	3
Gain root access to embedded OS of HU	21	High	2
Flash malicious code to firmware of environment sensors	41	Beyond High	1

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Risk mapping table (for situations controllable by driver)

Pick lovo	ID	Prot	babilit	y of s	ucce	ss P
NISK IEVE		P=1	P=2	P=3	P=4	P=5
	S _i =1	0	0	1	2	3
	S _i =2	0	1	2	3	4
Severity S _i	S _i =3	1	2	3	4	5
	S _i =4	2	3	4	5	6

The less controllable the situation by the driver, the higher the safety-related risk.

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Sample risk analysis

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Prioritising security requirements

- · Security requirements mapped to attacks
- Summary of risk analysis
 - collates results from risk assessment of all attack trees
 - identifies risk levels found from attack trees and the number of their occurrences
- Interpretation
 - few instances and/or low risk suggest low priority for protection
 - high risk and/or many instances suggest higher priority for protection

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Presentation outline

- Project overview
- Overview of technical work packages
 - Security requirements engineering
 - Secure on-board architecture design
 - Security architecture implementation
 - Prototype-based demonstration
- Summary and outlook

Secure on-board architecture design – Overview

- Design a toolkit of security measures (software, hardware, and architectural) that can be selected for implementation in future automotive on-board systems
 - Model Driven Engineering (MDE) approach under development
- · Formal verification of security properties of Security Building Blocks"

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Fraunhofer SIT Security Modeling Framework

- · Describes system behaviors as (sets of) sequences (traces) of actions
- · Actions associated with agents (entities) in the system
- Satisfaction of security properties depends on the agents' view of the system
 - Authenticity = agent is certain of occurrence of an action
 - Confidentiality = action parameter (e.g. sender or message contents) is indistinguishable for all other agents

7th escar Embedded Security in Cars Conference, November 24–25, 2009

Security engineering with formal model approach

- Describe protocols/mechanisms as Security Building Blocks (SeBB)
- Refine security requirements (external properties) through means to hardware/contractual roots (internal properties)

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Hardware Security Module as security anchor

- Main goal
 - Providing secure platform for cryptographic functionalities that support use cases
- Features
 - Secure Storage
 - Hardware Cryptographic Engines
 - Secure CPU Core
 - Scalable Security Architecture

Advantages

- Flexibility
- Extendability
- Migration Path from existing SW solutions

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Options of general structure of hardware security modules

- · HSM physically separated from CPU
 - Less secure than a single chip: connection between CPU and HSM not secure.
 - Suitable for short-term designs or low-security applications with very small production runs
 - Expensive: extra chip costs more due to the extra pins,
- HSM in the same chip as the CPU but with a state machine
 - More secure than external chip and more cost-effective
 - Not flexible: Hardware not modifiable, but automotive µC life cycle is more than 20 years
 - Suitable for very high security applications with very short lifetimes
 - Cryptographic applications will need to be implemented at the application CPU level: possible performance issues.
 - Changing a state machine requires hardware redesign and is very expensive

· HSM in the same chip as the CPU but with a programmable secure core

- proposed solution
- Secure and cost-effective
- Flexible because of programmable core
- Usable for other industries

7th escar Embedded Security in Cars Conference, November 24-25, 2009

27

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Classes of Hardware Security Modules

- Light HSM
 - Security module applicable e.g. for sensors
- Medium HSM
 - Selected security functions e.g. required for a gateway or router
- Full HSM
 - Provides security for very critical application requiring powerful security
 - Enabled by enough resources of the ECU

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Topology of EVITA light version HSM

• sensor/actuator level

	AES-128 CCM,GCM f/ AE			Application NVM	App F	lication RAM
	EVITA HW interface	int	emal	Application CPU	Bus inte	-comm erface
L	CU chip boundary		L	Арріса		
				In-vehicle bus syste	em	

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Topology of EVITA medium version HSM

• ECU Level

CCM,GCM #AE 16x 64bit monot. 512kB interface CPU	AES-128	Counters	64 kB Internal NVM	100 MHz RISC EVITA HW	i	nternal	NVM Application	RAM Bus-comm
	CM,GCM∜AE	16x 64bit monot.	512 kB	interface			CPU	interface
Cryptographic building block Logic building block EVITA cryptographic boundary Applicati	Cryptographic bu	building block Logic building block EVITA cryptographic boundary			J		Applicat	ion core

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Topology of EVITA full version HSM

• ECU Level - V2X

ECC-256-GF(p) NIST FIPS 186-2 prime field		AES-PRNG with TRNG seed	Internal RAM 64 kB	Internal CPU Microblaze 32bit 100 MHz RISC			Application NVM	Applio RA	cation	
WHIRLF AES-base	POOL d hash	AES-128 CCM,GCM f/ AE	Counters 16x 64bit monot.	Internal NVM 512kB	EVITA HW interface	_	internal	Application Bus CPU int		omm face
Cryptographic building block EVITA cryptographic boun			Logic buil dary	ding block]		Applica	tion core		
				ECU chip be	oundary					

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Hardware interface between HSM and application CPU

- HSM and application CPU have write/read rights for the Shared Memory
- Trigger through interrupts
- Optional polling: periodic check of the result buffer

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Presentation outline

- · Project overview
- · Overview of technical work packages
 - Security requirements engineering
 - Secure on-board architecture design
 - Security architecture implementation
 - Prototype-based demonstration
- · Summary and outlook

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Security architecture implementation – Overview

- Prototype a secure on-board hardware architecture using a standard automotive controller with an FPGA acting as Hardware Security Module (secure cryptocoprocessor)
- Prototype a secure on-board **software architecture**, i.e. hardware drivers, basic software extensions (e.g., crypto library), and necessary security protocols
- Validate functional compliance, security compliance, partitioning (i.e. SW/HW, light/medium/full), performance, and costs of hardware and software implementation

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

Presentation outline

• Project overview

· Overview of technical work packages

- Security requirements engineering
- Secure on-board architecture design
- Security architecture implementation
- Prototype-based demonstration
- · Summary and outlook

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Prototype-based demonstration

- inside a lab car demonstrating e-safety applications based on vehicle-to-X communication
- to come

Presentation outline

- · Project overview
- · Overview of technical work packages
 - Security requirements engineering
 - Secure on-board architecture design
 - Security architecture implementation
 - Prototype-based demonstration
- · Summary and outlook

7th escar Embedded Security in Cars Conference, November 24–25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Summary and outlook

• Summary

- Goal: Securing in-vehicular applications and components
- Achievements so far
 - · Security requirements analysis based on threat analysis
 - Design of three classes of HSMs
 - Design of a security software architecture based on AUTOSAR

Next Steps

- Open specification of soft- and hardware design and protocols: Input for standardization
- Proof-of-concept by formal verification
- Prototypical implementation using the AUTOSAR stack CUBAS from Bosch
- Integration into a demonstrator

⁷th escar Embedded Security in Cars Conference, November 24-25, 2009

7th escar Embedded Security in Cars Conference, November 24-25, 2009

EVITA-Project.org: E-Safety Vehicle Intrusion Protected Applications

Thank you for your attention.

Dr.-Ing. Olaf Henniger Fraunhofer Institute SIT olaf.henniger@sit.fraunhofer.de

7th escar Embedded Security in Cars Conference, November 24-25, 2009

Dipl.-Inf. Hervé Seudié Robert Bosch GmbH herve.seudie@de.bosch.com

