
Identification of authenticity requirements in
systems of systems by functional security analysis

Andreas Fuchs and Roland Rieke
Fraunhofer Institute for Secure Information Technology (SIT)

Rheinstrasse 75, 64295 Darmstadt, Germany
Email: {andreas.fuchs,roland.rieke}@sit.fraunhofer.de

Abstract—Cooperating systems typically base decisions on
information from their own components as well as on input from
other systems. The reasoning process of one system that is part
of a system of systems can take into account a wider scope that
is out of reach of its own boundaries. Safety critical decisions of
a system based on information from the environment, such as
automatic emergency braking of a vehicle, raise severe concerns
to security issues.

In this paper we address the security engineering process
for systems of systems. In particular we present a systematic
and constructive approach to the authenticity requirements
elicitation step in this process. The method is based on functional
dependency analysis. It comprises the tracing down of functional
dependencies over system boundaries right onto the origin of
information. This spans a dependency graph with a safety critical
function as root and the origins of decision relevant information
as leaves.

Based on this graph, we deduce a set of authenticity require-
ments for the input from the leaves of the derivation graph. This
set is comprehensive and defines the maximal set of authenticity
requirements from the given functional dependencies. Further-
more, the proposed method avoids premature assumptions on the
architectural structure and mechanisms to implement security
measures.

I. I NTRODUCTION

Architecting novel mobile systems of systems poses new
challenges to getting the dependability and specifically the
security requirements right as early as possible in the system
design process. Security engineering is one important aspect
of dependability [1]. This process addresses such issues as
how to identify and mitigate risks resulting from connectivity
and how to integrate security into a target architecture [2].

A typical application area for mobile systems of systems
are vehicular communication systems in which vehicles and
roadside units communicate in ad hoc manner to exchange
information such as safety warnings and traffic information. As
a cooperative approach, vehicular communication systems can
be more effective in avoiding accidents and traffic congestion
than current technologies where each vehicle tries to solve
these problems individually. However, introducing dependence
of possibly safety critical decisions in a vehicle from the
information of the network raises severe concerns to security
issues. Security is an enabling technology in this emerging
field because without security those systems would not be
possible at all. In some cases security is the main concern
of the architecture [3].

The first step in the design of such a system is the require-
ments engineering process. This process typically covers at
least the following three main activities [4], [5], [6]

1) preparative actions, such as a) the identification of the
target of evaluation and the principal security goals and
b) the elicitation of artifacts, e.g. use case and threat
scenarios to support requirements definition as well as
c) risk assessment.

2) the actual security requirements elicitation process
3) concluding actions, such as requirements categorisation

and prioritisation, followed by requirements inspection

In this paper we address the security requirements elicitation
step in this process. We present a model-based approach to
systematically identify security requirements for systems to
be designed in a systems of systems context. Our contribution
comprises the following distinctive features:

• Identification of a consistent and complete set of au-
thenticity requirements.Security requirements need to
be explicit, precise, adequate, non-conflicting with other
requirements and complete [7].
We show how the overall security goal of maximum
authenticity of all information from cooperating entities
leads to a comprehensive set of authenticity requirements.
Once an exhaustive list of requirements is identified, a
requirements categorisation and prioritisation process can
evaluate them according to a maximum acceptable risk
strategy.

• Security mechanism independence.The most common
problem with security requirements, when they are spec-
ified at all, is that they tend to be accidentally replaced
with security-specific architectural constraints that may
unnecessarily constrain the security team from using the
most appropriate security mechanisms for meeting the
true underlying security requirements [8].
In our approach we avoid to break down the overall re-
quirements to requirements for the edges of the functional
dependency graph prematurely. So the requirements iden-
tified by this approach are independent of decisions not
only on concrete security enforcement mechanisms to
use, but also on the structure, such as hop-by-hop versus
end-to-end security measures.

Throughout this paper we use the following terminology
taken from [1]: A system is an entity that interacts with



other entities, i.e., other systems. These other systems are
the environmentof the given system. Asystem boundaryis
the common frontier between the system and its environment.
Such a system itself is composed ofcomponents, where each
component is yet another system. Furthermore, in [1] the
dependenceof system A on system B represents the extent to
which system A’s dependability is affected by that of system
B. This work though focuses on purely functional aspects of
dependence and omits quantitative reasoning.

For the approach proposed, we describe thefunctionof such
a system by afunctional modeland treat the components as
atomic and thus we do not make preliminary assumptions
regarding their inner structure. Rather, the adaption to a
concrete architecture is considered to be a task within a follow-
up refinement and engineering process.

II. RELATED WORK

The development of new security relevant systems that in-
teract to build new systems of systems requires the integration
of a security engineering process in the earliest stages of
the development lifecycle. This is specifically important in
the development of systems where security is the enabling
technology that makes new applications possible.

A comprehensive concept for an overall security require-
ments engineering process is described in detail in [5]. The
authors propose a 9 step approach called SQUARE (Security
Quality Engineering Methodology). The elicitation of the
security requirements is one important step in the SQUARE
process. In [6] several concrete methods to carry out this step
are compared. These methods are based on misuse cases (MC),
soft systems methodology (SSM), quality function deployment
(QFD), controlled requirements expression (CORE), issue-
based information systems (IBIS), joint application develop-
ment (JAD), feature-oriented domain analysis (FODA), critical
discourse analysis (CDA) as well as accelerated requirements
method (ARM). A comparative rating based on 9 different
criteria is also given but none of these criteria measures
the completeness of the security requirements elicited by the
different methods.

A similar approach based on the integration of Common
Criteria (ISO/IEC 15408) called SREP (Security Requirements
Engineering Process) is described in [4]. However the concrete
techniques that carry out the security requirements elicitation
process are given only very broadly. A threat driven method
is proposed but is not described in detail.

In [8] different kinds of security requirements are identified
and informal guidelines are listed that have proven useful
when eliciting concrete security requirements. The author
emphasises that there has to be a clear distinction between
security requirements and security mechanisms.

In [9] it is proposed to use Jackson‘s problem diagrams to
determine security requirements which are given as constraints
on functional requirements. Though this approach presentsa
methodology to derive security requirements from security
goals, it does not explain the actual refinements process,

which leaves open, the degree of coverage of requirements,
depending only on expert knowledge.

In [10] actor dependency analysis is used to identify at-
tackers and potential threats in order to identify security
requirements. The so calledi∗ approach facilitates the analysis
of security requirements within the social context of relevant
actors. In [11] a formal framework is presented for modelling
and analysis of security and trust requirements at an organi-
sational level. Both of these approaches target organisational
relations among agents rather than functional dependence.
Those approaches might be utilised complementary to the
presented. Also the output of organisational relations analysis
may be an input to our functional security analysis.

In [7] anti-goals derived from negated security goals are
used to systematically construct threat trees by refinementof
these anti-goals. Security requirements are then obtainedas
countermeasures. This method aims to produce more complete
requirements than other methods based on misuse cases. The
refinement steps in this method can be performed informally
or formally.

III. M OTIVATION

The derivation of security requirements in general, espe-
cially the derivation of authenticity requirements represents an
essential building block for system design. With an increase
in the severity of safety-relevant systems’ failures the demand
increases for a systematic approach of requirements derivation
with a maximum coverage. Also during the derivation of
security requirements, no pre-assumptions should be made
about possible implementations.

We will further motivate this with respect to the require-
ments derivation process with an example from the field
of vehicle-to-vehicle communications and demonstrate the
common mistakes.

A. Example Use Case

For a better illustration of the described problems we will
refer to an example, illustrating use case description for a
possible vehicle-to-vehicle scenario:

1) Use Case 1:A vehicle’s Electronic Stability Protection
(ESP) sensor recognises that the ground is very slippy when
accelerating in combination with a low temperature. In order to
warn successive vehicles about a possibly icy road, the vehicle
sends out information about this danger including the GPS
position data, where the danger was detected.

2) Use Case 2:A vehicle receives a warning about an icy
road at a certain position. It compares the information to its
own position and heading and signals the driver a warning,
if the dangerous area lies up front. Additionally the vehicle
will retransmit the warning, given that the position of this
occurrence is not too far away.

B. Common Approaches

There are several possible approaches, that may be taken,
depending on the system architect’s background.

An architect with a background in Mobile Adhoc Networks
(MANETs) would first define the data origin authentication



[12] of the transmitted message. In a next step he may reason
about the trustworthiness of the transmitting system.

An architect with a background in Trusted Computing [13]
would first require for the transmitting vehicle to attest for
its behaviour [14]. Advanced experts may use the techniques
of sealing, binding, key restrictions and TPM-CertifyKey to
validate the trustworthiness and bind the transmitted datato
this key [15].

A distributed software architect may first start to define
the trust zones. This would imply that some computational
means of composing slippy wheels with temperature and
position happen in an untrusted domain. Results may be the
timestamped signing of the sensor data and a composition of
these data at the receiving vehicle.

C. Problem Evaluation

The presented methods shall only illustrate a few different
approaches that might be taken, when challenged with the
development of secure architecture like this. Still, one can
see, that very different types of security requirements arethe
outcome. Some of which leave attack vectors open, such as
the manipulation of the sending or receiving vehicles internal
communication and computation.

Another conclusion that can be derived from these examples
is related to premature assumption about the implementation.
Whilst in one case the vehicle is seen as a single computational
unit that can be trusted, in another case it has to attest for its
behaviour when sending out warnings. The third analysis of
the same use cases however, requires for a direct commu-
nication link and cryptography between the sensors and the
receiving vehicle and the composition of data is moved to the
receiver side.

Though all of the approaches may lead to the same level
of security for the designed architecture, there is no meansby
which they can be compared regarding the security require-
ments, that they fulfil. By analysis of the authors, this is a di-
rect result of falsely defined system boundaries, where security
requirements are formulated against internal subsystems rather
than the system at stake itself. The choice of the appropriate
abstraction level and system boundaries constitutes a rather
big challenge to systems of systems design, especially in a
system of systems application like the one presented here.

IV. A PPROACH

The approach described in the following can be decomposed
into three basic steps. The first one is the derivation of the
functional model from the use case descriptions in terms of an
action oriented system. In a second step the system at stake is
defined and possible instantiations of the first functional model
are elaborated. In a third and final step, the actual requirements
are derived in a systematic way, resulting in a consistent and
complete set of security requirements.

A. Functional Model

For the description of the functional model from the use
cases an action-oriented approach is chosen. The approach

sensing(ESP-Sensor,

positioning(GPS,position)

Vehicle-Component

send(CU,

receive(CU,

show(Driver,
warning(relativePosition))

forward(CU,
dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))

Fig. 1. Example Functional Component Model

is based on the work from [16]. For reasons of simplicity
and readability the formal description of the model is omitted
here and a graphical representation is used to illustrate the
behaviour of the evaluation target.

A functional model can be derived from a use case de-
scription by identifying the atomic actions in the use case
description. These actions are set in relation by defining the
functional flow among them. The functional flow considers In-
put/Output operations as well as interprocess communication,
or even interthread communication. The important factor is,
that some kind of data transport or control flow takes place.
Therefore, it does not matter, if the data is transmitted by
an action triggering push-operations, or by pull-operations.
However, if availability and lifeness analysis were taken into
account as well, the analysis of control flow would need to be
addressed as well.

In the case of highly distributed systems and especially a
distributed system of distributed systems, it is very common,
that use cases do not cover a complete functional cycle
throughout the whole system under investigation. Rather only
certain components of the system are described regarding their
behaviour. This must be kept in mind, when deriving the
functional model. In order to clarify this distinction, functional
models that describe only parts of the overall system behaviour
will be called functional component model.

Example - Functional Component Model:Regarding the
example use cases given in Section III-A the resulting func-
tional component model for a vehicle can be illustrated as
shown in Figure 1. In this context, functional flow arrows
outside of the vehicle’s boundaries do refer to functional flows
between different instances of the component, whilst internal
flow arrows refer to flows within the same instance of the
component. For the given example, the external flows represent
data transmission of one vehicle to another, whilst the internal
flows represent communication within a single vehicle.

B. System Instances

Based on the functional component model, one may now
start to reason about the overall system. The synthesis of the
inner and the outer system behaviour builds the global system
behaviour. The instantiation of the component described inthe
use cases has to be done with care though. It is not the goal to
instantiate every possible combination of e.g. names, as those



system instances would be isomorphic. Rather, it is desired
to construct allstructurally differentpossibilities that may be
used to construct a system.

Finally, all possible instances may be regrouped and the sys-
tem’s boundary actions (denoting the actions that are triggered
by or influence the system environment) have to be identified.
These will be the basis for the security requirements definition
in the next step.

Example - System Instances:In Figure 2 an example for
possible instances of the vehicle description in a distributed
vehicle-to-vehicle scenario is presented. Note that the number
of instance for such a scenario seems to be infinite in this rep-
resentation, though, of course, the number is firstly restricted
to the number of vehicles on earth. Secondly, the forwarding
of a message was restricted to the distance from the danger,
that is being warned about. We could therefore assume a
certain (unclear) number, but the security requirements should
be general enough, to cover all these cases, e.g. by utilising a
description in a parameterised way.

C. Functional Security Requirement Identification

The set of possible instantiations of the functional com-
ponent model is used in a next step to derive security re-
quirements. First, the boundary actions of the system model
instances have to be determined. The termboundary action
in this sense refers to the actions that form the interactionof
the internals of the system with the outside world. These are
actions that are either triggered by occurrences outside ofthe
system or actions that involve changes to the outside of the
system.

With the boundary actions being identified, one may now
follow the functional graph backwards. Beginning with the
boundary actions by which the system takes influence on the
outside, we may propagate backwards along the functional
flow. These backwards references basically describe the func-
tional dependencies of actions among each other. From the
functional dependency graph we may now identify the end
points - the boundary actions that trigger the system behaviour
that depends on them. Between these and the corresponding
starting points, a requirement exists, that without such an
action happening as input to the system, the corresponding
output action must not happen as well. From this we formulate
the security goal of the system at stake:

Whenever a certain output action happens, the input action
that presumably led to it, must actually have happened.

This requirement shall now be enriched by additional pa-
rameters. In particular, it shall be identified which is the entity
that must be assured of the aforementioned requirement. With
these additional parameters set, we may utilise the definition
of authenticity from the formal framework of Fraunhofer SIT
[17], to specify the identified requirements.

The syntax used to describe these requirements in parame-
terised form is defined as follows:

Definition 1: Authentic(A,B, P ): Whenever an actionB
happens, then it must be authentic for an AgentP , that in any
course of events that seem possible to him, a certain actionA

has happened (for a formal definition we refer the reader to
[17]).

It shall be noted, that the requirements process in this
case utilised positive formulations of how the system should
behave, rather than preventing a certain malicious behaviour.
Also it has to be stressed, that this approach guarantees forthe
system / component architect to be free regarding the choice
of concepts during the security engineering process.

Special care has to be taken though in cases of unlimited
possible system instances - as is the case with the presented
example. In practice, a certain boundary may usually be drawn,
e.g. the maximum number of computers is naturally restricted.
Therefore, there always exists only a countable and limited
number of instances of the system. Accordingly we may define
sets of requirements regarding certain large and undefined but
limited sets of instances.

Finally, requirements (especially those referring to large
sets) may be evaluated regarding to their importance to the sys-
tem. This manual analysis may reveal that certain functional
dependencies are presented only for performance reasons.
This can be valuable input for the architects as well, and
sometimes reveal premature decisions about mechanisms, that
were already done during the use case definition phase.

Though it might appear possible that this approach may
form infinite circles among the system actions, this cannot
happen for well-defined use cases. This actually originates
from the fact that every action represents a progress in time.
Accordingly an infinite loop among actions in the system
would indicate that the system described will not terminate.

The requirements derivation process will however highlight
every functional dependency that is described within the use
cases. Accordingly, when the use case description incorporates
more than the sheer safety related functional description,
additional requirements may arise. Therefore, the requirements
have to be evaluated towards their meaning for the system’s
safety. Whilst one can be assured not to have missed any safety
relevant requirement, this is a critical task, that should be
performed with care, in order not to misjudge a requirement’s
relevance and thereby induce security holes.

D. Formalisation

Formally, the functional flow among actions can be inter-
preted as an ordering relationζi on the set of actionsΣi in
a certain system instancei. To derive the requirements the
reflexive transitive closureζ∗i is constructed. By construction
rule, the functional flow graph is sequential and free of loops,
as every action can only depend on past actions. Accordingly,
the relation is anti-symmetric.ζ∗i is a partial order onΣi,
with the maximal elementsmax corresponding to the outgoing
boundary actions and the minimal elementsmin correspond-
ing to the incoming boundary actions. After restrictingζ∗i to
these elementsχi = {(x, y) ∈ Σi × Σi | (x, y) ∈ ζ∗i ∧ x ∈
min∧ y ∈ max} this new relation represents the authenticity
requirements for the corresponding system instance:For all
x, y ∈ Σi with (x, y) ∈ χi: auth(x, y, stakeholder(y)) is a
requirement.Accordingly the union of all these requirements



sensing(ESP-Sensor,

positioning(GPS,position)

V ehicle0

send(CU,

receive(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))
sensing(ESP-Sensor,

positioning(GPS,position)

V ehiclew

send(CU,

receive(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))

show(Driver,

forward(CU,

show(Driver,

forward(CU,

Instance 1:

sensing(ESP-Sensor,

positioning(GPS,position)

V ehicle0

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))
sensing(ESP-Sensor,

positioning(GPS,position)

V ehicle1

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))
sensing(ESP-Sensor,

positioning(GPS,position)

V ehiclew

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))

Instance 2:

sensing(ESP-Sensor,

positioning(GPS,position)

V ehiclew

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))
sensing(ESP-Sensor,

positioning(GPS,position)

V ehicle1

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))
sensing(ESP-Sensor,

positioning(GPS,position)

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))

Instance 3:
V ehicle0

sensing(ESP-Sensor,

positioning(GPS,position)

V ehicle2

send(CU,

receive(CU,

show(Driver,

forward(CU,

warning(relativePosition))

dangerwarning(position,type))dangerwarning(position,type))

SlippyWheels) dangerwarning(position,type))

. . . . . . . . .
Fig. 2. Example Functional Model Instances

for the different instances pose the set of requirements for
the whole system. However, a lot of correlations between the
system instances should appear, such that either requirements
overlap, or first-order predicates can express them.

Example - Security Requirements of Authenticity:
For the given system model instances, we may now
identify the authenticity requirements for the action
show(Vw,Dw, warn(rP )) (with V =Vehicle, D=Driver,
CU=Communication Unit, ESP=Electronic Stability
Protection sensor, warn=warning, pos=positioning,
sens=sensing, rP=relativePosition, pD=positionData,
sW=slippyWheels, dw=dangerwarning). Graphically, this
could be done by reversing the arrows and removing the
dotted arrows and boxes.
Formally, for the first system instance, we can analyse:
ζ1 = {(sens(ESP (V0), sW ), send(CU(V0), dw)),

(pos(GPS(V0), pD), send(CU(V0), dw)),
(send(CU(V0), dw), rec(CU(Vw), dw)),
(pos(GPS(Vw), pd), show(Vw,D,warn(rP ))),
(rec(CU(Vw), dw), show(Vw,D,warn(rP )))}

ζ∗
1

= ζ1 ∪ {(x, x)|x ∈ Σ} ∪ {
(sens(ESP (V0), sW ), rec(CU(Vw), dw)),
(sens(ESP (V0), sW ), show(Vw,Dw, warn(rP ))),
(pos(GPS(V0), pD), rec(CU(Vw), dw)),
(pos(GPS(V0), pD), show(Vw,Dw, warn(rP )))}

χ1 = {(sens(ESP (V0), sW ), show(Vw,Dw, warn(rP ))),
(pos(GPS(V0), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(Vw), pD), show(Vw,Dw, warn(rP )))}

An analysis for the second system instance will result in:
χ2 = {(sens(ESP (V0), sW ), show(Vw,Dw, warn(rP ))),

(pos(GPS(V0), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(Vw), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(V1), pD), show(Vw,Dw, warn(rP )))}

And the third system instance will result in:

χ3 = {(sens(ESP (V0), sW ), show(Vw,Dw, warn(rP ))),
(pos(GPS(V0), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(Vw), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(V1), pD), show(Vw,Dw, warn(rP ))),
(pos(GPS(V2), pD), show(Vw,Dw, warn(rP )))}

The first three elements in eachχi will obviously always be
the same. The rest of the elements can be expressed in terms of
first-order predicates. This leads to the following authenticity
requirements for all possible system instances:
1) auth( pos(GPS(Vw), pD),

show(Vw,Dw, warn(rP )),Dw )
2) auth( pos(GPS(V0), pD),

show(Vw,Dw, warn(rP )),Dw )
3) auth( sens(ESP (V0), sW ),

show(Vw,Dw, warn(rP )),Dw )
4) ∀ Vx ∈ Vforward : auth( pos(GPS(Vx), pD),

show(Vw,Dw, warn(rP )),Dw )
As mentioned above, the resulting requirements have to be

evaluated regarding their meaning for the functional safety of
the system. For the first three requirements the argumentation
is very straight forward regarding, why they have to be
fulfilled:

1) It must be authentic for the driver, that the relative
position of the danger he/she is warned about is based
on correct position information of his/her vehicle.

2) It must be authentic for the driver, that the position of
the danger he/she is warned about is based on correct
position information of the vehicle issuing the warning.

3) It must be authentic for the driver, that the danger he/she
is warned about is based on correct sensor data.

The last requirement 4) however must be further evaluated.
Studying the use case, we see, that this functional dependency
originates from the geographic based forwarding policy. This
policy is introduced for performance reasons, such that band-



width is saved by not flooding the whole network. Braking
this requirement would therefore result either in a smaller
or larger broadcasting area. As bad as those cases may be,
they cannot cause the warning of a driver, that should not be
warned. Therefore we do not consider requirement 4 to be a
safety related authenticity requirement. It can be considered a
requirement regarding availability by preventing the denial of
a service or unintended consumption of bandwidth.

E. Further steps

Starting from this set of very high-level requirements, the
security engineering process may start. This will include deci-
sions regarding the mechanisms to be included. Accordingly
the requirements may be refined to more concrete requirements
in this process. The design and refinement process may reveal
further requirements regarding the internals of the system, that
have to be addressed as well.

V. CONCLUSION

The presented approach for deriving safety critical au-
thenticity requirements in systems of systems solves several
issues compared to existing approaches. It incorporates a clear
scheme that will ensure a consistent and complete set of
security requirements. Also it is based directly on the func-
tional analysis, ensuring the safety of the system at stake.The
systematic approach that incorporates formal semantics leads
directly to the formal validation of security, as it is required
by certain evaluation assurance levels of Common Criteria
(ISO/IEC 15408). Furthermore the difficulties of designing
systems of systems are specifically targeted.

In practice, the method described here is applied in the
project EVITA 1 to derive authenticity requirements for the
development of a new automotive on-board architecture util-
ising vehicle-to-vehicle and vehicle-to-infrastructurecommu-
nication.

A. Future Work

Future work may include the derivation of confidentiality
requirements in a similar way, as was presented here. Though
this will require for different security goals, as confidentiality
is not related to safety in a similar way, but rather privacy.Non-
Repudiation may also be a target, that should be approached
in cooperation with lawyers, in order to find the relevant
security goals. Furthermore, the refinement throughout the
design process should be evaluated regarding possibility of
formalising it in schemes with respect to the security require-
ments refinement process.

ACKNOWLEDGMENT

Part of the work presented in this paper was developed
within the project EVITA being co-funded by the European
Commission within the Seventh Framework Programme.

1EVITA (E-Safety Vehicle Intrusion Protected Applications) http://www.
evita-project.org

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”IEEE
Trans. Dependable Sec. Comput., vol. 1, no. 1, pp. 11–33, 2004.

[2] D. J. Bodeau, “System-of-Systems Security Engineering,”in In Proc. of
the 10th Annual Computer Security Applications Conference, Orlando,
Florida. IEEE Computer Society, 1994, pp. 228–235.

[3] P. Papadimitratos, L. Buttyan, J.-P. Hubaux, F. Kargl, A.Kung, and
M. Raya, “Architecture for Secure and Private Vehicular Communica-
tions,” in IEEE International Conference on ITS Telecommunications
(ITST), Sophia Antipolis, France, June 2007, pp. 1–6.

[4] D. Mellado, E. Ferńandez-Medina, and M. Piattini, “A common criteria
based security requirements engineering process for the development of
secure information systems,”Comput. Stand. Interfaces, vol. 29, no. 2,
pp. 244–253, 2007.

[5] N. R. Mead and E. D. Hough, “Security requirements engineering
for software systems: Case studies in support of software engineering
education,” in CSEET ’06: Proceedings of the 19th Conference on
Software Engineering Education & Training. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–158.

[6] N. R. Mead, “How To Compare the Security Quality Requirements
Engineering (SQUARE) Method with Other Methods ,” SoftwareEn-
gineering Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU/SEI-2007-TN-021, 2007.

[7] A. van Lamsweerde, “Elaborating security requirements byconstruction
of intentional anti-models,” inICSE ’04: Proceedings of the 26th
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 148–157.

[8] D. Firesmith, “Engineering security requirements,”Journal of Object
Technology, vol. 2, no. 1, pp. 53–68, 2003.

[9] C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation and analysis,”
IEEE Trans. Software Eng., vol. 34, no. 1, pp. 133–153, 2008.

[10] L. Liu, E. Yu, and J. Mylopoulos, “Analyzing security requirements as
relationships among strategic actors,” in2nd Symposium on Require-
ments Engineering for Information Security (SREIS’02), 2002.

[11] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Requirements
engineering meets trust management: Model, methodology, and reason-
ing,” in In Proc. of iTrust 04, LNCS 2995. Springer-Verlag, 2004, pp.
176–190.

[12] R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949
(Informational), Aug. 2007. [Online]. Available: http://www.ietf.org/rfc/
rfc4949.txt

[13] T. C. Group, “TCG TPM Specification 1.2 revision 103,”
www.trustedcomputing.org, 2006.

[14] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Designand
implementation of a TCG-based integrity measurement architecture,”
in Proceedings of the 13th USENIX Security Symposium. USENIX
Association, 2004.

[15] A.-R. Sadeghi and C. Stüble, “Property-based attestation for computing
platforms: caring about properties, not mechanisms,” inNSPW ’04:
Proceedings of the 2004 workshop on New security paradigms. New
York, NY, USA: ACM, 2004, pp. 67–77.

[16] P. Ochsenschläger, J. Repp, and R. Rieke, “Abstraction and composition
– a verification method for co-operating systems,”Journal of
Experimental and Theoretical Artificial Intelligence, vol. 12, pp. 447–
459, June 2000, copyright:c©2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved. [Online]. Available:
http://sit.sit.fraunhofer.de/smv/publications/download/flairs-2000c.pdf

[17] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “Authenticity and
provability - a formal framework,” inInfrastructure Security Conference
InfraSec 2002, ser. Lecture Notes in Computer Science, vol. 2437.
Springer Verlag, 2002, pp. 227–245.


