
A Security Architecture for Multipurpose ECUs in Vehicles

Frederic Stumpf, Fraunhofer-Institute SIT, München
Christian Meves, BMW Group Research and Technology, München
Benjamin Weyl, BMW Group Research and Technology, München
Marko Wolf, escrypt GmbH, München

Kurzfassung

Dieser Beitrag stellt Konzepte und Mechanismen zur Absicherung multifunktionaler

Steuergeräte in Fahrzeugen vor. Insbesondere gilt es den Einsatz von vertrauenswürdigen,

sicherheitskritischen Anwendungen neben Anwendungen mit einer geringeren

Vertrauenswürdigkeit auf einer Plattform zu ermöglichen, ohne die Sicherheit der

vertrauenswürdigen Anwendungen zu gefährden. Dazu wird in diesem Beitrag eine

Sicherheitsarchitektur vorgestellt, die Anwendungen wirkungsvoll voneinander abschottet

und einen sicheren Kommunikationsfluss gewährleistet. Die Architektur stellt weiterhin

sicher, dass sicherheitskritische Anwendungen ausschließlich in vertrauenswürdigen

Umgebungen voll funktionsfähig sind. Das bedeutet, dass Manipulationen an der

Fahrzeugsoftware erkennbar sein müssen und nur Anwendungen in einem akzeptierten

Zustand den Zugriff auf weitere Fahrzeugkomponenten erhalten dürfen.

1. Introduction

Current research activities in vehicular on-board IT architectures basically follow two key

trends: unification of network communication and centralization of functionality.

Recent on-board IT architectures comprise a very heterogeneous landscape of

communication network technologies, e.g., CAN, LIN, FlexRay and MOST. Internet Protocol

(IP) based communication is currently being researched as a technology for unifying the

overall interconnection of ECUs in future on-board communication systems [14].

State-of-the art vehicular on-board architectures consist of up to 70 Electronic Control Units

(ECU), which are interconnected via different bus communication systems. In order to

substantiate economical aspects, such as vehicular weight reduction by saving ECU

hardware resources or increasing maintainability, the trend is towards centralization of

functionality. The centralization of single ECU functions on multipurpose ECUs allows for

significant reduction of the overall number of in-vehicle ECUs and hence helps to mitigate the

overall complexity [20]. Open standards and interfaces need to be created in order to create

platforms, where software from different suppliers can be steadily integrated [19].

Besides these trends in the design of automotive on-board IT architectures, new external

communication interfaces, fixed and wireless are becoming an integral part of on-board

architectures. One key factor for this development is the integration of future e-Safety

applications based on V2X1 communications [10,12] that have been identified as one

promising measure for decreasing the number of fatal traffic accidents. In addition, user

electronic devices, such as smartphones or music players are increasingly integrated in in-

vehicle infotainment systems. However, adding external interfaces to vehicular on-board

architectures poses new security threats to these systems. Specifically safety applications

need to be secured against malicious attacks [11].

Key security requirements of safety applications and safety related information are integrity,

authenticity, and trustworthiness. Applying virtualization techniques on multipurpose ECUs

support these security requirements, as this technology provides the separation of processes

and applications, and hence allows for the execution of applications with different trust levels

on the same ECU. As application domains with varying trust levels may communicate within

the on-board network, it is reasonable to additionally provide respective security measures in

order to control the information flow amongst such domains. We believe that the combination

of virtualization and Trusted Computing technologies (e.g., based on Trusted Platform

Modules [9]) provides the measures for meeting our discussed security requirements.

An approach to provide a software and hardware security architecture will be the outcome of

the EVITA project (E-safety Vehicle Intrusion proTected Applications) of the Seventh

European Framework Program, which aims to design, verify, and prototype a security

architecture for vehicular on-board networks, where all security-relevant components and

sensitive information are protected against tampering and malicious manipulations [13].

Thus, EVITA implements the security technology for vehicular communication endpoints,

enabling the security of safety applications, but also most other V2X communication

applications (e.g., vehicular comfort, or business applications).

1 V2X is an abbreviation stands for any external vehicular communications such as Vehicle-to-Vehicle

(V2V) or Vehicle-to-Infrastructure (V2I) communications.

1.1 Our Contribution

This paper specifically focuses on security aspects of communication between multipurpose

ECUs based on virtualization technology, where applications can be securely isolated from

each other. We propose a security architecture for multipurpose ECUs that is based on

virtualization techniques and Trusted Computing technology. Instead of equipping each ECU

running on a multipurpose ECU with additional security services, we introduce a dedicated

security controller. This approach requires the ECUs to only implement minimal security

services and, thus, easy migration of existing ECUs to our security architecture. The security

controller operates in an isolated domain and is in charge of controlling the information flow

between applications. Our security architecture enables communication within the on-board

network as well as with external entities in a trustworthy manner by evaluating the integrity

and trustworthiness of a sender. For this purpose, we present a security protocol used by the

multipurpose ECUs in order to securely exchange data. We finally have implemented parts of

our approach in a proof-of-concept prototype to ensure that our approach is feasible.

1.2 Outline

The remainder of this paper is organized as follows. In Section 2, we present background

information about virtualization techniques and Trusted Computing technology our solution is

based upon. Section 3 discusses the overall scenario we are considering and in Section 4,

we present the architecture of our multipurpose ECUs. In Section 5, we show how we realize

the integrity reporting in our multipurpose ECU architecture including the security protocols

for message exchange. In Section 6, we present details about our proof-of-concept

prototype. Finally, we conclude with Section 7.

2. Background

In this section, we present some background information about virtualization techniques and

Trusted Computing technology.

2.1 Virtualization

Virtualization basically means realizing several runtime environments in parallel but strictly

isolated on a shared hardware. Nowadays, virtualization is an accepted standard and is used

in the desktop and server market as a genuine alternative solution to several individual

dedicated hardware systems. Through today’s availability of modern and highly efficient

virtualization solutions, virtualization becomes extremely interesting also for vehicular

applications [3].

As depicted in Figure 1, the concept of virtualization is based on an additional abstraction

layer, called the Virtual Machine Monitor (VMM) or hypervisor that is situated between the

hardware layer and the operating system(s) or application(s). In practice, this abstraction

layer can be realized in hardware, in software, or by a hardware/software combination. The

main task of the VMM is to enable the sharing of the real physical resources with all existing

runtime environments executed in parallel, called Virtual Machines (VM), without causing any

resource conflicts or inconsistencies; in one word: to virtualize. The utilization of the

virtualized hardware resources, in turn, has to be transparent for each VM in a way that it can

be executed in almost the same manner as a single individual process on its dedicated

hardware. The mutual strict isolation, the access control to all shared hardware resources

and the control of the VMs itself is managed by the VMM. That means, the VMM implements

all effective access policies for all communications, applications, and data as well as for all

shared hardware resources. Therefore, the VMM is the actual crucial component in all

virtualization concepts for realizing and enforcing the operational IT safety and the IT security

as well.

Figure 1: Structure of a virtualized IT Architecture

As described in more detail in [3], the application of virtualization technologies for vehicular

ECUs enables various benefits and advantages such as reduction of hardware costs,

increased hardware efficiency, peak performance, flexibility, and interoperability as well as

especially increased IT safety and IT security while enabling a multilevel-security and

multilevel-safety per ECU architectures.

2.2 Trusted Computing

Trusted Computing technology as proposed by the Trusted Computing Group (TCG) [9]

provides a set of basic security components and functionalities (e.g., isolated encryption) that

form the base for a larger set of high-level security functions (e.g., platform integrity

attestation) that can be built upon. Together with a secure operating system, Trusted

Computing (TC) can be used to build an appropriate basis for security architectures with

improved security especially for distributed and embedded applications that are executed

also in "hostile environments".

The following subsections introduce those TC functionalities, which are significant for the

design of our security architecture for protection of multipurpose ECUs in vehicles, that

means, (i) the Trusted Platform Module (TPM), (ii) the authenticated boot process, (iii) the

sealing/binding functionality, and (iv) the remote attestation functionality.

2.2.1 Trusted Platform Module

The base of TC technology is the standardized Trusted Platform Module (TPM) that is

considered to be a tamper-resistant hardware device similar to a smart-card and is assumed

to be securely bound to the computing platform. The TPM is primarily used as a root of trust

for integrity measurement and reporting and to secure all critical cryptographic operations (cf.

following paragraphs). Current TPMs base on the open specification version 1.2 published by

the Trusted Computing Group (TCG) [7,8,9]. The TPM hardware ensures that malicious

software cannot compromise any cryptographic secrets since all security-critical operations

such as key generations and decryption operations are done “on-chip”, so that secret keys

do not have to leave the chip.

2.2.2 Authenticated Boot

During an authenticated boot process as proposed by the TCG, any code that will be

executed is “measured” before execution concretely by calculating its cryptographic hash

value. TC hardware is responsible for the secure storage and authentic provision of these

measurement results. The hierarchical measurement chain (e.g., a hash chain) starts at the

Core Root of Trust Measurement (CRTM), which has to be trusted a priori by all involved

parties that want to evaluate the derived measurements. The CRTM is a small immutable

(verifier) code implemented into the boot ROM or similar that is executed at first during the

booting process. The step-by-step measuring and execution of the boot strap (starting at the

CRTM) covers all consecutive layers that are part of the Trusted Computing Base (TCB).

Upon completion of an authenticated boot process, these measurements reflect the

configuration of the currently running hardware and software environment. TC technology,

however, remains passive and hence does not (and cannot) prevent a certain (insecure)

computing environment from being executed.

2.2.3 Binding and Sealing

A distinctive feature of TC hardware is the ability to not only use passwords as authorization

(e.g., for a decryption operation with a specific TPM protected key), but also the integrity

measurements determined during the authenticated boot process as described before. Thus,

only a platform running a previously defined software or hardware configuration can be

authorized to use a certain key. Moreover, the property that a certain key is “bound” to a

platform configuration can be certified by the underlying TC hardware. This certification

includes the integrity measurements that authorize a platform to employ the key. A remote

party can verify the certificate and validate the embedded integrity measurements against

“known good” reference configurations before encrypting data with the certified key. While

the TC binding mechanism binds data only to a certain hardware/software configuration, the

TC sealing mechanism additionally includes also always a linkage to the TPM’s unique

identity (i.e., the Endorsement Key). Thus, sealing is mainly used for sealed storage, which

means, to seal data of a device to itself.

2.2.4 Remote Attestation

The TC remote attestation functionality is used to report the actual platform hardware and

software configuration to an external remote party. To guarantee integrity and freshness of

the platform configuration reporting, the corresponding integrity measurement values and a

fresh nonce provided by the remote party are digitally signed with an asymmetric key called

Attestation Identity Key (AIK) that is linked to the unique identity of the TPM (i.e., the

Endorsement Key) that is under the sole control of the TPM. A trusted third party called

Privacy Certification Authority (Privacy CA) is used to guarantee the pseudonymity of the

AIKs.

3. Scenarios and Security Requirements

The following section describes the underlying scenario for which our security solution has

been designed for and derives the corresponding security requirements that have to be

fulfilled.

3.1 Scenarios

We consider two different scenarios that are based on trends of on-board vehicular networks

as described in the introduction. Within the first scenario, we presume the co-existence of

multipurpose ECUs and common ECUs, whilst within the second scenario we consider an

architecture where only multifunctional ECUs are deployed. The first scenario can be seen

as a first step of evolution where not all ECUs are ported to multipurpose ECUs, but also

self-contained, widely autonomous ECUs still exist in the on-board infrastructure. The next

step in evolution could be that all ECUs are ported to multipurpose ECUs.

Figure 2 shows a multipurpose ECU communicating with other common ECUs. The

multipurpose ECU consists of a virtualization-supporting hardware platform, such as Intel’s

Atom processor [18], a hypervisor for virtualizing the underlying hardware, and a number of

virtual machines (VM). In addition, we assume an automotive-capable hardware-based trust

anchor, such as the security module currently being designed and prototyped within the

EVITA project [13]. For this reason we used in this proposal the TPM since it is currently the

only available security module. Each VM is strongly isolated from other VMs and executes

the software environment of a proprietary ECU. In addition, the hypervisor provides

mechanisms such as virtual machine inspection that allows monitoring the ECU VMs. Hence,

if it detects a state that is considered unsecure or untrusted, it can reset the VM to a known

secure state.

Figure 2: Multipurpose ECU communicating with other ECUs

3.2 Security Requirements

For the scenarios presented above, we define the following security requirements.

o (SR. 1) Mandatory communication control: Access control based on

authentication, authorization, and integrity and trust verifications can be reliably

enforced.

o (SR. 2) Secure communications: Confidentiality, integrity, authenticity, and

freshness of in-vehicle and external communications can be reliably enforced.

o (SR. 3) Platform integrity enforcement: Integrity of in-vehicle ECU platforms can be

reliably enforced or modified platform configurations can at least be reliably detected.

o (SR. 4) Strong runtime isolation: ECU applications can communicate or access

each other’s data only over the specified interfaces.

4. Security Architecture

The following section describes the underlying security architecture and the security

protocols for the integrity attestation of the ECUs. Figure 3 shows the overall architecture

where multiple ECUs (applications) are running on a Virtual Machine Monitor (VMM). The

VMM provides an abstraction to the underlying hardware and provides an isolated execution

environment for each ECU (satisfying SR. 4). The VMM itself runs on a virtualization-

supporting hardware, which is for simplicity reasons not shown in this figure. The figure also

shows the three storage locations and the resulting keys that protect access to this storage.

The depicted components as well as the secure boot are described in the next subsections.

Figure 3: Overall architecture of a multipurpose ECU

4.1 Security Controller

We propose a security controller which is responsible for validating the trust level of a VM

and for controlling the communication between VMs and other ECUs. The security controller

is a special purpose virtual machine and only one instance of a security controller can run on

a multipurpose ECU. All vehicle communication messages are forwarded over the security

controller which decides and enforces whether a communication message is forwarded to

the destination ECU and whether the message satisfies the required security properties

(satisfying SR. 1). A communication message may for example include an integrity proof of

the source ECU and can, thus, only be transmitted if this proof is authentic and the ECU is

authorized for the requested action. For this purpose, the security controller includes a policy

decision point (PDP) where a pre-defined policy specifies which ECUs are allowed to

communicate with which ECUs and which security requirements the transmitted messages

must satisfy (e.g., secure communication cf. SR. 2). The decision of the PDP is then

enforced by the policy enforcement point (PEP) which drops a message, forwards a

message or modifies a message (e.g., encrypts the message with the cryptographic key of

the destination ECU) according to the policy. Besides deciding whether a message is

forwarded or not, the security controller controls the access to the secure storage, where the

virtual appliances of the virtual machines are stored. Thus, after the security controller has

been executed, it unseals the virtual appliances from the secure storage and executes the

virtual machine (see Section 4.2 for additional information).

Formally, the protection state of a multipurpose ECU as protected by the security controller in

time t is described using the matrix which is modeled as follows:

o denotes the set of subjects whereas .

o denotes the set of objects.

o denotes the set of conditions where a

 denotes that both and do not provide an integrity proof,

i.e., they are not trusted.

o denotes the set of rights, for example, .

A matrix entry describes the set of rights that a subject has on an

object at time t under a certain condition .

This model is then used to construct the access control matrix , which is a three-

dimensional matrix. Examplarily assume that three ECUs (ECU1, ECU2, ECU3) are each

located in a separate domain of one multipurpose ECU. ECU1 measures the distance to

the vehicle ahead (e.g., by using radar waves) and transmits a message to ECU3 if the

distance changes (comparable to the active cruise control (ACC) already integrated in

modern vehicles). ECU3 is allowed to interfere with the speed control of the vehicle and

can brake or accelerate the vehicle. However, since interfering with the speed control of

the vehicle is a safety critical task, the trustworthiness of ECU1 must be ensured. Thus,

ECU3 only accepts messages if ECU1 is in a provable and secure state. Vice versa, the

driver can adjust the desired distance of the vehicle driving ahead using the Human

Machine Interface (HMI) attached to ECU2. The delivered distance control message is not

necessarily security critical and, thus, does not require an integrity proof. Please note that

this is a very simple example use case and that even though that many vehicles already

have comparable systems, it is not necessarily realized as described here. Table 1 and

Table 2 examplary show how parts of the resulting matrix could look like.

 Table 1: A very simple example policy for indicating that both subject and

object do not provide an integrity proof.

Table 2: A very simple example policy for indicating that both subject and

object do provide an integrity proof.

This concept enables the integration of untrusted and trusted applications on one

multipurpose ECU. In addition, it prevents untrusted applications from inflicting damage to

trusted applications, e.g., by injecting malicious messages, such as, malicious and non-

compliant brake commands.

4.2 Virtual Machines

A virtual machine (VM) represents the interface to the bare hardware constructed by the

underlying hypervisor [2]. Each VM runs its own software environment often referred to as

virtual appliances [4] that consist of a fully pre-installed and pre-configured application and

operating system (OS). A virtual appliance is usually configured to host only a single

application (the firmware of a particular ECU) and the included OS is adapted (i.e.,

minimized) to the essential application’s need. This approach allows for good efficiency and

flexibility since existing and proprietary ECU hardware/software environments can easily be

migrated into this new environment.

Each time a new VM is created, a virtual TPM instance is initiated and pre-configured (cf.

Section 4.3). The VM also provides an attestation service, which enables accessing the

content of the platform configuration register and, thus, the secure reporting of its underlying

integrity state to a remote entity.

In order to reduce vulnerabilities, the VM distinguishes between program memory and data

memory, similar to the Harvard architecture. The program memory holds the program

machine code represented by a sequence of instructions and the data memory holds data

that are related to the ECUs or security controller’s state. Any modifications to the program

memory cannot be written back to the virtual appliance, meaning that each time before the

VM spawns, its program memory is reverted to its initial state. Isolating program and data

memory are realized through two different disk images. The secondary disk image is used to

store state specific data. However, since data stored on the secondary disk image may be

able to influence the runtime condition, only data that originates from the VM is stored there.

Figure 4: Secure boot mechanism actions taken when a multipurpose ECU spawns

The actions taken when a VM spawns are shown in Figure 4 that includes the unsealing (cf.

Section 2.2.3) of the virtual appliance (often also referred to as image) and the initialization of

the VM’s virtual TPM. Booting a VM is triggered by the security controller which unseals the

image of the VM from the secure storage and spawns a VM. Note that the creation of a

vTPM instance requires unsealing of the vTPM storage using the SRK. As soon as the VM

spawned, it can provide a vTPM signed certificate about its integrity state using the

attestation service (cf. Section 5).

4.3 Virtual TPM (vTPM)

An important precondition for placing trust in a remote entity is the establishment of a

complete integrity measurement chain from the hardware-based security anchor up to and

including the top ECU application. The hardware TPM is virtualized by providing a virtual

software TPM to every VM instance. This approach has firstly been introduced by Berger et

al. [1] and we employ these concepts here. The advantages of using a virtual TPM in

contrast to only using a hardware TPM are twofold:

o First, it enables to generate a proof of the system configuration of the VM in a very

small amount of time since the vTPM is a layer of software and, thus, does not

possesses the same performance degradations as currently available hardware

TPMs [6].

o Second, multiple VMs running on a virtualization layer can attest their individual

system configuration to other entities without publishing the configurations of other

VMs executed in parallel.

The persistent storage of a virtual TPM is located inside the virtual machine monitor, which in

turn is protected by the hardware TPM. Thus, a vTPM-enhanced virtual machine cannot alter

the storage of the vTPM. Each time a new VM is created, a virtual TPM instance is initiated

with the sealed vTPM storage, and the PCRs 0-15 are filled with the PCR values from the

underlying hardware TPM. Additionally, the hash value of the measured virtual appliance of

the security controller (PCR16) and the hash value of the virtual appliance of the VM is

stored in the virtual TPM (PCR17) as shown in Table 3.

Platform Configuration
Register (PCR)

Content of TPM (Integrity
Measurements)

Content of vTPM (Integrity
Measurements)

0..7 CRTM and BIOS CRTM and BIOS
8..15 Bootloader and VMM Bootloader and VMM
16 Security Controller Security Controller
17.. Empty Virtual appliance of the VM

Table 3: Mapping of the PCR values

In order to report the platform configuration of a VM, a strong binding between vTPM and

TPM must exist. Otherwise, it would be possible for the vTPM to report PCR values to a

remote entity that are different from the ones that were measured by the underlying hardware

TPM. To prevent attacks of this type, we make use of a virtual attestation identity credential

(vAIK) which is issued and certified by a valid attestation identity key (located inside the

hardware TPM). This concept has been proposed in [5] and prevents using malicious or

invalid vAIKs. However, usage of this vAIK is only necessary in the certification phase and

not in the attestation phase where an ECU delivers messages to another ECU with an

integrity proof (Cf. Section 5).

5 Integrity Reporting and Attestation

Our approach is based on a virtual TPM which is a layer of software and, hence, does not

provide the same security level as a classic hardware TPM. Thus, the vTPM must be

protected against tampering and be protected by the hardware TPM while allowing fast and

secure integrity reporting. We achieve this objective by combining a secure boot with a

concept that we call integrity stage checks. Integrity stage checks ensure that access to a

particular component located on a specific stage is only possible if all checks that where

primarily performed succeed.

5.1 Secure Boot

In addition to an authenticated boot mechanism as described in Section 2.2.2, we assume

that integrity references are locally available that represent a valid ECU configuration. The

secure boot process is also based on a security anchor that has to be trusted a priori by all

parties that rely on the secure boot mechanism. As shown in Figure 5, the secure boot pro-

Figure 5: Secure boot chain for integrity protection

cess also memorizes all integrity measurements within the (hardware) protected security

anchor for a potential later provision and evaluation. During the depicted secure boot process

- starting at the security anchor - each component (a) first measures (e.g., by calculating its

cryptographic hash value) the code of the component that will be executed next while (b)

these measurements results are securely stored at the security anchor. The actual

measurements then (c) can be verified for correctness by comparing them with the

references values securely retrieved either directly from the security anchor or as part of the

own configuration that has been successfully verified before. In case of a difference, an

alarm can be raised, a pre-defined response can be executed (e.g., boot fail-safe from a

ROM) or the boot process can be stopped at all. Finally, the measured and verified

consecutive component is (d) executed and takes over control to extend the hierarchical

integrity verification chain accordingly. In our case, the secure boot integrity verification

consists at least from (1) the security anchor, (2) the bootloader, (3) the hypervisor (later

denoted as virtual machine monitor), and (4) the VM bootloader of the security controller.

In order to enable a flexible secure boot (e.g., for security updates), a secure reference

update mechanism (e.g., based on a shared secret or a public key scheme) is required,

which will not be covered here.

5.2 Integrity Stage Checks

Integrity stage checks ensure that when a specific stage has been successfully passed, the

platform satisfies a set of specific security requirements associated to a specific stage, thus,

satisfying SR. 3. Integrity stage checks complement the secure boot process described

above by extending the secure boot process over the virtualization boundary and by applying

more fine-granular checks. The integrity stage checks performed in our architecture are as

follows:

Integrity stage check 1: security controller

The first integrity stage check is performed after successful execution of the security

controller. For this purpose, the security controller’s virtual appliance is sealed to the

PCR[0..15] using a key that resides in the hardware TPM, for instance the SRK as shown in

Figure 3. The unsealing of the security controller is initiated by the secure boot which

measures the VM bootloader and hands over control to the bootloader. The bootloader then

unseals the virtual appliance of the security controller and spawns the security controller. As

a result, the first integrity stage check can only be passed if PCR[0..15] are in a known state

and the virtual appliance of the security controller can be decrypted.

Integrity stage check 2: vTPM-storage

The second integrity stage check can only be passed if the vTPM storage of a specific vTPM

instance is in a known and authentic state. For this purpose, the vTPM storage is sealed to

the PCR[0..16] of the hardware TPM using the SRK. Note that this approach requires

updating and a resealing of the vTPM persistent storage each time new data, such as

cryptographic keying material, is placed inside this secure storage of the vTPM.

Integrity stage check 3: ECU specific attestation key

If the preceding integrity stage checks have been successfully passed, the ECU has access

to its own associated vTPM. The last integrity stage check is performed before an ECU is

able to use his ECU specific key KECU. This key is bound to the virtual TPM’s PCR[0..17]

and thus only usable if all previous checks succeed and the vTPM’s PCRs are the same as

when KECU was initially bound to. In addition, access to this KECU is only possible if the

security controller is running and, thus, is able to validate all in-vehicle messages originating

in an ECU.

5.3 Attestation Protocols

To enable attestation, we divide into an initialization phase and an attestation phase. In this

initialization phase, which is typically executed only once, the vTPM is equipped with a

special key (KECU) which is later used for attestation and which is bound to the configuration

of the VM. This key is then certified by a trusted party to ensure that the ECU’s configuration

is known and trusted. The advantage of this concept is that an ECU is able to proof to

another entity that it is trusted without requiring the other entity to perform complex

computations in order to evaluate the trustworthiness of the ECU.

5.3.1 Initialization Phase

The certification protocol needs only be executed when the software configuration of the

ECU changes. Its purpose is to generate a cryptographic key which directly identifies an

ECU and is only usable if the software configuration is in the same state as this

cryptographic key was initially bound to. The protocol for issuance of such a key and the

corresponding certificate is described in the following, where V denotes a validator that is

able to validate the platform integrity, e.g., the supplier of the ECU firmware, ECU is an ECU

that wants to receive a certificate, and SC is the security controller. First, V must acquire

(and validate) the certificate of the Privacy-CA to validate Cert(vAIK, KvAIK). The protocol can

be executed over an insecure channel which allows for remotely updating and integrating

new ECU components on a multipurpose hardware platform. The protocol is shown in the

following:

5.3.2 Attestation Phase

After the successful initialization phase, the ECU is now in possession of KECU and the

corresponding certificate. The key KECU can now be used to prove to another ECU that it is

trusted, by simply signing a fresh message with this key. The advantage of this concept is

that a verifier does only need to verify whether the certificate is valid, rather than parsing the

whole measurement chain.

6. Implementation

The security controller has been partly prototypically implemented. We have implemented

the secure startup of the security controller and access control functionality of the security

controller based on policies which can be pre-configured per VM. The prototype uses IP-

based communication for communication between VMs. We have integrated the components

of the security controller with XEN [17] version 3.2.1 on a standard PC with integrated TPM.

Our access control model has been implemented in Java based on the XACML (eXtensible

Access Control Markup Language) specification v1.1 [15] and integrated with Squid [16].

Squid intercepts the communication flow and requests a policy decision based on the

XACML standard by the policy decision point, where a permit/deny decision is generated

based on the configured policies and the security context. In our prototype, the security

context comprises the source and destination IP address and the condition (i.e., the trust

level). The security context is collected by the policy information point and forwarded to the

PDP according to the notion of the XACML standard. The described attestation protocol

within this paper has yet not been fully implemented.

The security controller image is encrypted with a symmetric key and needs to be decrypted

using the corresponding key, which is sealed to the platform. Hence, the key is unsealed

first, and then used to decrypt the image. We have performed measurements for the

unsealing of the security controller image. First, the private key used for the unsealing

process needs to be loaded to the TPM, then, the symmetric key can be unsealed, which is

used for decrypting the security controller image. Unsealing this symmetric key on an Intel

Core 2 Duo processor takes approx. 2,8 seconds. The decryption of the security controller

using the unsealed key is finished after 3,6 seconds. This shows that the architecture is not

feasible using a standard TPM and that a security chip with more computation power is

required.

7 Conclusion

We have presented a security architecture that supports the deployment of applications with

different trust levels on multipurpose ECUs by applying virtualization and Trusted Computing

technology. The security architecture comprises a dedicated security controller which is in

charge of controlling the communication flow between VMs on the same multipurpose ECU

as well as the communication to external entities. This communication can be controlled by

specifying a dedicated access control matrix. This matrix considers a set of conditions, e.g.,

trust for the generation of an access decision (permit/deny). We have proposed a protocol for

efficiently issuing and exchanging trust statements within a vehicular on-board network,

issued or enforced by a security controller. However, our proposed concept is also applicable

for V2X communication scenarios. This security controller operates in a trusted isolated

environment and enforces the policies discussed above. It is already feasible to deploy our

approach in on-board architectures, where only one multipurpose ECU is available since it

enables the secure integration of less trusted applications with trusted environments.

Acknowledgments

This work presents parts of the collaborative project EVITA co-funded by the European Commission

under the 7th Framework Program.

 References

[1] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer, and Leendert
van Doorn. vtpm: virtualizing the trusted platform module. In USENIX-SS’06: Proceedings of the
15th conference on USENIX Security Symposium, pages 21–21, Berkeley, CA, USA, 2006.
USENIX Association.

[2] Robert P. Goldberg. Survey of virtual machine research. Computer, June 1974.

[3] Jan Pelzl, Marko Wolf, and Thomas Wollinger. Virtualization Technologies for Cars: Solutions to
increase safety and security of vehicular ECUs. In Automotive – Safety & Security, Stuttgart,
Germany, November 19–20, 2008. Shaker Verlag, 2008.

[4] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. Virtual appliances for deploying and maintaining
software. In Proceedings of the 17th USENIX conference on System administration (LISA ’03),
pages 181–194, Berkeley, CA, USA, 2003. USENIX Association.

[5] Frederic Stumpf, Michael Benz, Martin Hermanowski, and Claudia Eckert. An Approach to a
Trustworthy System Architecture using Virtualization. In Proceedings of the 4th International
Conference on Autonomic and Trusted Computing (ATC-2007), volume 4158 of Lecture Notes in
Computer Science, pages 191–202, Hong Kong, China, 2007. Springer-Verlag.

[6] Frederic Stumpf, Andreas Fuchs, Stefan Katzenbeisser, and Claudia Eckert. Improving the
scalability of platform attestation. In Proceedings of the Third ACM Workshop on Scalable
Trusted Computing (ACM STC’08), pages 1–10, Fairfax, USA, October 31 2008. ACM Press.

[7] Trusted Computing Group. TCG PC Client Specific Implementation Specification for Conventional
BIOS. Technical report, July 2005.

[8] Trusted Computing Group (TCG). http://www.trustedcomputinggroup.org, 2009

[9] Trusted Computing Group (TCG). Trusted Platform Module (TPM). Main Specification Version 1.2
Revision 103, TPM Work Group, July 2007

[10] Kosch, T.: Local Danger Warning based on Vehicle Ad-hoc Networks: Prototype and Simulation.
In Proceedings of 1st International Workshop on Intelligent Transportation (WIT), Hamburg,
Germany, March 2004.

[11] Barisani, A., Bianco, D.: Unusual Car Navigation Tricks. In Proceedings of CanSecWest,
Vancouver, Canada, April 2007.

[12] Car-to-Car Communication Consortium (C2C-CC), http://www.car-to-car.org, 2009.

[13] E-safety vehicle intrusion protected applications (EVITA) Project. http://www.evita-project.org,
2009.

[14] Rahmani, M., Hillebrand, J., Hintermaier, W., Bogenberger, R., Steinbach, E.. A Novel Network
Architecture for In-Vehicle Audio and Video Communication. In Proceedings of Second IEED/IFIP
International Workshop on Broadband Convergence Networks. May 2007.

[15] OASIS. Extensible access control markup language (xacml) version 1.1 committee specification.
August 2003.

[16] Squid, http://www.squid-cache.org/, 2009.

[17] Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.; Pratt, I.; Warfield, A.; Barham, P. &
Neugebauer, R. Xen and the Art of Virtualization Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[18] Product Brief. Intel Atom Processor Z5xx Series for Embedded Computing.
http://download.intel.com/design/chipsets/embedded/prodbrf/Atom_Product_Brief.pdf, 2009.

[19] Genivi Alliance, http://www.genivi.org/, 2009.

[20] Holzknecht, S., Biebl, E., Michel, H. Graceful Degradation for Driver Assistance Systems, In
Advanced Microsystems for Automotive Applications 2009, pp. 255-265, Springer Verlag, 2009.

