SAME 2010 Forum

Session 3
Partitioning of in-vehicle Systems-on-Chip: a Methodology based on DIPLODOCUS

Daniel Knorreck, Ludovic Apvrille, Renaud Pacalet,
{daniel.knorreck, ludovic.apvrille, renaud.pacalet } @telecom-paristech.fr
Institut Telecom, Telecom ParisTech, CNRS LTCI
Route des Cretes BP 193, F-06904 Sophia Antipolis, France

Abstract

This article highlights a methodology yielding a
HW/SW partitioning of in-vehicle Systems-on-
Chip. The methodology is based on a MARTE
compliant UML profile called DIPLODOCUS.
The starting points are separate UML
application and architecture models derived
from an informal, textual specification. The
information available at this early design stage
is efficiently leveraged to automatically
generate executable models. Simulation
reveals first performance results without the
designer having to write any single line of code.
The performance figures guide the designer
towards the partitioning which best fits to given
non-functional requirements. Abstractions
inherent to application and architecture models
allow for fast simulations. The methodology
has been successfully applied to in-vehicle
Systems-on-Chip.

1 Introduction

A System-on-Chip can be defined as a set of
communicating electronic components
integrated into one single chip. The latter
components are highly heterogeneous in
nature: digital, analog and mixed signal
components may be interconnected to make
up complex systems ranging from mobile hand
sets and set top boxes to automotive
controllers and feedback control systems for
rail cars.

The complexity of embedded systems and
Systems-on-Chip has been increasing rapidly
not only in the field of consumer electronics.
Also embedded in-vehicle systems now
comprise up to 70 ECUS (Electronic Control
Units) executing security related functionality
as well as sophisticated control and
convenience features [5]. On the one hand, the
virtues of integration should be leveraged to
improve security, safety and the user
experience. On the other hand, the gap
increases between integration and designer

efficiency due to inadequate tools and
methodologies. It becomes more and more
unlikely that an optimal design represents an
intuitive solution.

Thus, given a particular functionality and
associated requirements, the design space is
considered as representing all functionally
equivalent implementation alternatives. The
analysis of systems at low abstraction levels
exhibits a high degree of accuracy but comes
with the downside of being demanding and
slow. Traditional simulation techniques
operating at register transfer level (RTL),
instruction or transaction level are not
appropriate for Design Space Exploration
(DSE) at system scope for two reasons:

. Only a very Ilimted number of
implementation alternatives can be
examined due to the high modeling effort
and extensive simulation runtime.

. The lack of specification at early
design stages may prohibit the
construction of detailed models - even if
the effort was acceptable.

Thus, abstractions are the key to success in
performing System Level DSE. In this context,
we have previously introduced a UML-based
environment named DIPLODOCUS. The
strength of our approach relies on formal
verification capabilities [2] [3] and fast
simulation techniques [1]. In this article, the
applicability of the methodology is
demonstrated with the aid of a case study in
the automotive domain. An insight into the
involved models, the design stages and finally
the obtained simulation results is provided.

The paper is structured as follows: Section 2
surveys the DIPLODOCUS methodology which
was followed to carry out the partitioning of an
in-vehicle System-on-Chip. Thereafter, Section
3 puts the methodology into practice by
showing how requirements translate into a
UML model with formal semantics and how it is
leveraged to obtain insightful simulation results.
Section 4 is positions the DIPLODOCUS
approach in the landscape of related work in
the field of System Level Design Space

SAME 2010 Forum — October 6 & 7, 2010

1

Exploration. Section 5 concludes this paper
and provides perspectives on future work.

2 The DIPLODOCUS methodology

DIPLODOCUS design approach (cf. Figure 1)
is based on the following fundamental
principles:

* Use of a high level language (UML)

e Clear separation between
application and architecture,
DIPLODOCUS thus enforces the so
called Y-Chart approach [6]

+ Data abstraction: only the amount of

data exchanged between functional
entities is modeled
* Functional abstraction: algorithms

are described using abstract cost
operators. The complexity of
computations is thus taken into account
without actually having to carry them
out.

e Use of fast simulation and formal
static analysis techniques, both at
application and mapping level

Application Modeling] (Architecture)

Modeling
| | Mapping |
Simulations
Static formal analysis
A
Application Mapping
on Architecture

Simulations
Static formal analysis

Y
Refinements

Figure 1: DIPLODOCUS Methodology

The designer is supposed to model in an
orthogonal fashion the application and the
architecture of the targeted system.

Applications are first described as a network
of abstract communicating tasks using a UML
class diagram. The latter represents the static
view of the application. The DIPLODOCUS
methodology provides synchronization and
data transfer primitives, where data flow and
control flow are not strictly separated to
simplify matters. Events are a means of inter-
task synchronization and come with finite and
infinite FIFO semantics. The reception of an
event is always blocking, its notification may or
may not be blocking. Channels are useful when

it comes to modeling extensive data transfers.
Several semantics are provided: Blocking
Read/Blocking Write, Blocking Read/Non
Blocking Write, Non Blocking Read/Non
Blocking Write.

Each task behavior is described with a UML
activity diagram. The latter is composed of
control flow and variable manipulation
operators (loops, tests, assignments, etc.),

communication operators (reading/writing
abstract data samples in channels,
sending/receiving events and requests),

computational cost operators and physical
delay operators.

Targeted architectures are modeled
independently from applications as a set of
interconnected generic hardware nodes. The
latter may be parametrized to exhibit a more
specific behavior. UML nodes were defined to
model HW elements (e.g. execution nodes like
CPUs and hardware accelerators,
communication nodes like buses and bridges
as well as memory nodes).

A mapping process defines how application
tasks can be bound to execution nodes and
also how abstract communications between
tasks are assigned to communication and
storage nodes.

The strength of our approach relies in
simulation and formal proofs techniques that
can be applied to modeled systems at all
methodological stages. UML application
models can be simulated with respect to the
underlying hardware, as opposed to state of
the art UML model simulators which operate at
a purely functional level. The environment
totally hides knowledge of simulation or formal
proofs techniques: knowledge of our UML
profile is the only asset for engineers.

Today, this methodology is supported by an
open-source toolkit named TTool [4]. The
tool comprises features for the creation of
models, the automatic transformation to
representations suited for simulation and
formal verification as well as the generation of
simulation traces (cf. Figure 2).

3 From specification to simulation
3.1 Context and considered use
case

In the remainder of this article, the model of an
application running in an automotive
environment is considered. It has been taken
from a case study which was carried out in the
scope of the European EVITA [5] project. The
objective of this projects is to analyze, to
design, to verify, and to prototype a modular,

SAME 2010 Forum — October 6 & 7, 2010

2

(cost-)efficient security solution for automotive
on-board embedded systems. A major concern
is to protect sensitive data within such systems
against compromise and, in doing so, to enable
secure communication inside cars and
between cars and infrastructure.

The use case covered in this paper deals with
the flashing procedure of the internal software
of an ECU (Electronic Control Unit). When a
car owner takes his car to a service station, the
motor mechanic may start a diagnosis session
which also allows to update the firmware of
ECUs. The specification comprises mainly two
elements: first, an informal textual description
of the use case is provided. The latter identifies
the reaction of the system to external stimuli
and moreover explains the context in which the
use case may be encountered. Second, the
text is accompanied by a semi-formal table
whose columns are standardized for all
documented use cases. Each row stands for a
communication or computation transaction
between or within ECUs respectively. A
transaction is characterized by an initiating
actor, a receiver in case of communications, a
type (communication/algorithm), a short
description, the length of a message and a
remark on the control flow (repetitions,
parallelism) to overcome the strictly sequential
nature of the table.

3.2 Application model

Given a specification as described in section
3.1, the developer first has to draw clear
boundaries between pieces of information
concerning the application and the
architecture. The notion of “actor” as referred
to in the specification combines a behavior and
an underlying execution hardware. The first
design step consequently consists in
identifying the set of behaviors an actor
may exhibit. Figure 2 depicts a subset of the
behaviors - namely tasks - which have been
identified for the considered use case. The
OutsideWorld task accounts for the stimuli
generated externally to the system.
DiagReqManagement responds to external
stimuli and dispatches requests to dedicated

tasks not shown in the figure.
CipherFunctions1 is in charge of ciphering and
deciphering messages sent by

DiagRegManagement. At the end of this design
stage, our UML class diagram has been
populated with tasks deduced from the
specification.

After the functional analysis, emphasis is now
placed on the the communication behavior
of the previously identified tasks. The designer
is faced with the question which of the

available communication primitives best fits to
the specification and allows the simulator to
determine the expected metrics. As a rule of
thumb, events transfer control information and
no data and the opposite case is handled by
non blocking write-non blocking read channels.
The other channel types are in between these
extreme cases. In Figure 2 for example, the
communication between Task OutsideWorld
and Task DiagManagement relies on channels
as the amount of exchanged data is significant.
Events were used to synchronize
DiagReqManagement and CipherFunctions1
because merely control information s
exchanged. The events signal for instance the
presence of data. Hence, after having
accomplished this stage, the class diagram has

been enriched with communication links
between tasks.
{firmmware_info_yeg, 64, BR-NEW}
Outsideworla Channel D —_
lose_session; 64, BR-NBW}
) .
-
Teonn_resp_fwd, 64, BR-NEW, ET

{cipheredatal, 1, BR-NBW}

‘ e FIFO}

{ciphe} 1(Matral); infinite FIFO}

{OK_fund, 54, BR-MBW}

{checkSignature L(Matural); infinite FIFO}
{sign1(Naturaly; [infinitd FIFO}

Channel
aherData s, NER-|

CipherFunctions1

+ bytes = 0: Natural;

Figure 2: Excerpt of the Class Diagram

The next steps towards an executable model is
to detail the behavior of each task by means
of a UML activity diagram. The global system
behavior defined in the specification must
therefore be broken down into suitable local
behavior descriptions for each task. Figure 3
shows the Activity Diagram of the
CipherFunctions1 Task. After having received
one of the three events cipher2, sign2, or
checkSignature2, the respective functionality is
carried out. For that purpose, we make use of
a Read command in order to fetch the data to
be processed. Thereafter, the computational
complexity is calculated as a function of the
amount of data to process and it is modeled in
terms of an abstract cost operator. Finally, the
produced data is written to a channel leading
back to the DiagReqgManagement Task.
Complexity estimations may be obtained in one
of the following ways: by (1) deducing the
number of operations from an algorithmic
description or another suitable source, (2) by
extracting data from measurements or traces
of similar existing systems, or (3) by inferring
the amount of operations from low level

SAME 2010 Forum — October 6 & 7, 2010

3

models, for instance source code. For our
model, we relied on given execution
frequencies which came with the specification
and on qualified guesses of designers
experienced in that field.

At this early design stage, algorithms often
lack a detailed definition. For that reason, cost
operators are at first used at a very coarse
grained level (cf. Figure 3) and stand for high
level activities like “Check message for
correctness”, “Driving power reduction
strategy”, etc. As the specification evolves, the
model may be refined so as to reflect different
executions of this algorithm. This is made
possible by control flow operators like loops
and conditions. It should be reemphasized that
a data dependent behavior of the application
has to be expressed in terms of random
operators. That is, a stochastic model of data
hazards has to be embedded into the
application model. However, this effort is not
particular to our methodology, neither it is to a
high level of abstraction. Whenever a system is
loaded with data dependent tasks, the
designer is obliged to come up with a statistical
model of the data to be processed. Only with
that model, it is possible to avoid over-
dimensioning the system for the worst case.
The statistical model gives the designer the
confidence that an architectural trade-off
delivers an acceptable performance with a
defined likelihood.

=i

cipherDonel(y

@

21
cipherl{hoOfBytes)

chl chl
[ipherDaIal(nuOfB\AEs)| [iphErDaIal(nDOfo\Es)|

241
il
cipherDatalinoOfBytes)

compCost = noOfBytes ™ 8 /5][[DmpCusl=nuOfo{Es 12] compiCost = naQfByvtes f 2

compCost compCost

chl chl
| cipheredData2 (noOfBytes) ‘ cipheredDara2 (noOTEytes)

chl
cipheredData2 (no0OfBytes)

:

Figure 3: Activity Diagram of Task
CipherFunctionsl

3.3 Architecture model

An excerpt of the the architecture model of the
ECU Flashing use case is depicted din Figure
4. An ECU called CU (Communication Unit)
manages the communication with the outside
word. It is connected to the main CAN bus of
the vehicle and contains a SoC consisting of a

CPU, a local memory, a Hardware Security
Module (HSM) and the internal bus
CU_SOC_Bus. The HSM accommodates the
task CipherFunctions1 and the task
DiagReqManagement is mapped onto the
CPU. Three of the channels depicted in Figure
2 are associated with the local memory of the
SoC. The ECU to be flashed is omitted in
Figure 4 .

» <<CPURRPE>>
CPU_CU

FlashingDesign: D D

n <

<BRIDGE> >
CU_local_to_CU_SOC

CU_S0C_Bus CUl_local_Bus *

\n<nus-ra>> =0 <BUS—PE>>

<<CPURRPE>>
Diagnosisinterfac

e
L] <<MEMORY>>
FlashingDesign:: OutsideWord D

RAM_CU e

anne
ashin
anne
ashmgDesign: cpharedDatal D
anne
* <<CPURRPE>>
hEILEY i <BRIDGE> >
CUl_ta_MC

- <<BUS-CAN>>
Main_CAN

Figure 4: Excerpt of the Architecture
Diagram

3.4 Experimental results

Key performance figures of the abstract model
are obtained by simulation just at the push of a
button. The UML model is automatically
translated into executable C++ code without
intervention of the user. So far, the utilization of
HW components, the average contention delay
for tasks (when sharing CPUs) and CPUs
(when sharing buses) as well as the execution
time of tasks can be determined. More
sophisticated metrics like end-to-end delays,
etc. could be easily added thanks to dynamic
listeners which can be plugged into the
simulation environment. In addition to that,
formalized properties may be checked on the
fly at simulation time.

In the context of the EVITA project, the
topology of the CAN network and the
positioning of ECUs is constrained by the
specification of the car architecture and the use
case respectively. The objective of the
partitioning stage is to compare the deployment
of security related functionality in software and
in hardware. Therefore, two different
architectures were assessed for the ECU
Flashing use case. The first one is partially
illustrated in Figure 4, the second one does not
comprise a separate HSM module so that the
ciphering is accomplished by the internal CPU
of ECUs. More concretely, this means that
CipherFunctions1 is mapped onto CPU_CU as
well.

For the first configuration, the simulation
revealed utilization factors of 63% for
CPU_CU, 68% for CU_SOC_Bus and a factor

SAME 2010 Forum — October 6 & 7, 2010

4

close to 0% for HSM_CU as ciphering
algorithms are applied to small messages.
Being utilized at 97%, the internal bus of the
ECU to be flashed was identified as a
bottleneck. This load is caused by the transfer
of the software update which transits the bus
twice (in decrypted and encrypted state).

For the second configuration, the load of
CPU_CU does not increase as the workload
imposed by ciphering algorithms is neglectable.
However, the utilization of the internal CPU of
the ECU to be flashed increases by more than
three times, which might not be tolerable.

4 Related work

Some of the current state of the art UML
modeling tools ([7], [8], [9], [10] amongst
others) exhibit simulation capabilities.
Simulations can only be performed based on
purely functional models in an untimed fashion.
Our interactive simulator however also
accounts for architecture semantics like
arbitration of shared resources, speed or data
throughput of devices, etc. Furthermore, the
execution behavior of models is tool dependent
as the UML standard lacks an execution
semantics. The DIPLODOCUS profile however
fills that semantic gap and thus also paves the
way for formal verification.

Related work in the field of system level
modeling and simulation often suffers from one
of the following problems: Off the shelves
solutions like [10] and [11] mostly do not permit
an orthogonalization of functionality and
architecture. Detailed RTL models of HW
components and the final software code must
be at hand to perform co-simulation. For
instance, Instruction Set Simulators are often
used to estimate the impact on performance of
software execution on a specific processor.
Thus, only little abstraction may be applied to
communication (SystemC TLM [16], etc) and
computations. Some academic approaches
enable the design of distinct models for
architecture and application ([12], [13], [14],
[15], [17]) In this case, the level of abstraction
is often not pushed high enough to explore a
representative subset of the HW/SW design
space in a reasonable time. Sometimes
application models do not exhibit
data/functional abstractions. In other cases, the
simulation strategy does not leverage
abstractions and models have to be refined
before being executable. For instance, [18]
bears resemblance with our approach with
respect to the modeling methodology where
UML is applied for architecture, application and
mapping models. As opposed to our
framework, the focus is put on streaming
applications exhibiting only occasional control
messaging and branching. For this reason, the

semantics of Kahn Process Networks has been
adopted for application models. The initial
model has to be refined before being simulated
as the simulation is carried out at SystemC
TLM level.

The DIPLODOCUS environment however
relies on data and functional abstractions to
leverage fast simulation techniques.
Nevertheless, the application model captures
different control flow branches and explicitly
models indeterminism. This property enables
the developer to easily vary the coverage of
the simulation. Explicit indeterminism also
alleviates the state explosion by abstracting
decision making processes. This in turn makes
the model amenable to formal verification.

5 Conclusions

This paper presented the DIPLODOCUS
methodology which defines a modeling
framework for Systems-on-Chip at a high level
of abstraction. All involved design stages are
supported by the modeling tool called TTool,
which also enables the simulation and formal
verification of UML models at the push of a
button. The methodology was explained and
illustrated with a case study of an in vehicle
embedded system. As it has been shown, the
methodology finally vyields insightful key
performance figures characterizing the system
intended for design. Based on the obtained
performance, the designer can consider
revising the mapping, the architecture, or
application. Important design choices are thus
made early in the design flow before much time
and money have been spent on the
development of RTL or transaction level
models. Last but not least, the methodology
allows developers to trade off performance
against cost.

Trading off accuracy against model complexity
of hardware components will remain subject to
our research. For example, instruction cache-
misses and data cache-misses have been
accounted for by static probabilities so far.
Indeed, as algorithmic details are represented
by symbolic instructions, the real code of the
application is not available thus making state of
the art cache models unsuited. Furthermore,
the accuracy of bus and memory models shall
be validated against a real embedded system.
A fair comparison with a real implementation
shall therefore reveal whether a set of
parameters can be found to limit the inaccuracy
to a reasonable extent.

References

[1] Daniel Knorreck, Ludovic Apvrille, and
Renaud Pacalet. Fast simulation techniques
for design space exploration. In Objects,

SAME 2010 Forum — October 6 & 7, 2010

5

(2]

(3]

(4]

(3]
(6]

(7]
(8]

9]

[10]

[10]
[11]

(12]

(13]

(14]

(15]

[16]

Components, Models and Patterns, volume
33 of Lecture Notes in Business Information
Processing, pages 308-327. Springer Berlin
Heidelberg, 2009

M. Waseem, L. Apvrille, R. Ameur-Boulifa, S.
Coudert, and R. Pacalet. Abstract application
modeling for system design space
exploration. Digital System Design:
Architectures, Methods and Tools, 2006. DSD
2006. 9th EUROMICRO Conference on,
pages 331-337, 0-0 2006

L. Apvrille, W. Muhammad, R. Ameur-Boulifa,
S. Coudert, and R. Pacalet. A UML-based
environment for system design space
exploration. Electronics, Circuits and
Systems, 2006. ICECS '06. 13" IEEE
International Conference on, pages 1272-
1275, Dec. 2006.

TTool, the Turtle
http://labsoc.comelec.enst.fr/turtle

http://www.evita-project.ora/

P. Lieverse, P. van der Wolf, E. Deprettere,
and K. Vissers. A methodology for architecture
exploration of heterogeneous signal
processing systems. In Signal Processing
Systems, 1999. SiPS 99. 1999 IEEE
Workshop on, pages 181-190, 1999.

Topcased. Topcased, www.topcased.org

Tau. Tau, www-01.ibm.com/software/
awdtools/tau

Rhapsody. Rhapsody,
software/awdtools/rhapsody

Artisan. Artisan studio,
www.artisansoftwaretools.com/products/artisa
n-studio

Coware Virtual Platforms www.coware.com.
Vast System Engineering Tools
www.vastsystems.com

Bastian Ristau, Torsten Limberg, and Gerhard
Fettweis. A mapping framework for guided
design space exploration of heterogeneous
mp-socs. Design, Automation and Test in
Europe, 2008. DATE '08, pages 780-783,
March 2008.

Jorgiano Vidal, Florent de Lamotte, Guy
Gogniat, Philippe Soulard, and Jean-Philippe
Diguet. A co-design approach for embedded
system modeling and code generation with
uml and marte. In Design, Automation & Test
in Europe Conference & Exhibition, 2009.
DATE '09., pages 226-231, April 2009.

A. D. Pimentel and S. Polstra and F. Terpstra,
Towards efficient design space exploration of
heterogeneous embedded media systems, In
Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and
Simulation, pages 57-73, Springer LNCS

A.D. Pimentel, C. Erbas, and S. Polstra. A
systematic approach to exploring embedded
system architectures at multiple abstraction
levels. Computers, |[EEE Transactions on,
55(2):99-112, Feb. 2006.

Members of the SystemC Verification Working
Group. SystemC Verification Standard

Toolkit:

www-01.ibm.com/

Specification Version 1.0e, www.systemc.org.
20083.

[17] Jorgiano Vidal, Florent de Lamotte, Guy
Gogniat, Philippe Soulard, and Jean-Philippe
Diguet. A co-design approach for embedded
system modeling and code generation with
uml and marte. In Design, Automation & Test
in Europe Conference & Exhibition, 2009.
DATE '09., pages 226-231, April 2009.

[18] Tero Arpinen, Ermo Salminen, Timo
Hamalainen, and Marko Hannikdinen.
Performance evaluationof = uml2-modeled
embedded streaming applications with
system-level simulation. EURASIP Journal on
Embedded Systems, 2009, March 2009.

About the Authors

Daniel Knorreck obtained his
diploma degree in Electrical
Engineering from the University
of Stuttgart and Telecom
ParisTech in 2008. He is
currently doing a PhD at the
“Systems-on-Chip" laboratory of
Telecom ParisTech at Sophia-
Antipolis. His research interests focus on the
modeling and simulation of embedded systems
and control engineering.

Ludovic Apvrille obtained his
M.Sc. in Computer Science
from ENSEIRB and
ISAE/ENSICA in 1997 and
1998, respectively. Then, he
completed a Ph.D. at LAAS-
CNRS, Toulouse, France, in
the research group Software
and Tools for Communication, in collaboration
with ISAE and Thales Alenia Space. After a
postdoctoral term at Concordia University
(Canada), Electrical & Computer Engineering
department, he joined LabSoc in 2003 as an
assistant professor at Telecom ParisTech, in
the Communication and Electronics
department. His research interests focus on
tools and methods for the modeling, simulation
and formal verification of embedded systems
and System-on-Chip.

"Renaud Pacalet received his

SM.S. from Telecom ParisTech
in 1988. He currently leads the
“Systems on Chip"” laboratory
of Telecom ParisTech at
Sophia-Antipolis. His research
fields are the specification,
modeling, design and
verification of integrated systems and their
security (side-channels, memory buses privacy
and integrity, formal verification of embedded
software).

EERERY

SAME 2010 Forum — October 6 & 7, 2010

6

http://labsoc.comelec.enst.fr/turtle
http://www.vastsystems.com/
http://www.coware.com/
http://www.artisansoftwaretools.com/products/artisan-studio
http://www.artisansoftwaretools.com/products/artisan-studio
http://www.artisansoftwaretools.com/
http://www.evita-project.org/

