

# Secure automotive on-board networks

Basis for secure vehicle-to-X communication

Dr.-Ing. Olaf Henniger Fraunhofer SIT / Darmstadt 2 December 2010



- EVITA project overview
- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary



#### EVITA project overview

- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary

### **Related European projects**











- SeVeCom (2006–2009) dealt with the protection of external vehicular communication
- PRECIOSA (2008–2010) dealt with the protection of privacy in vehicular communication
- EVITA (2008–2011) deals with the protection of onboard networks
  - Internal on-board security is basis for secure external vehicular communication
  - Objectives: To design, verify, and prototype building blocks for secure automotive on-board networks
  - Website: <a href="http://evita-project.org">http://evita-project.org</a>

# **EVITA** project partners































## **EVITA** project outline



**Finish** 

WP2000 Security requirements analysis

- Use cases
- Threat scenarios
- Legal aspects

WP3000 Secure on-board architecture design

- Software/ hardware partitioning
- HSMs as root of trust
- Model-based verification

WP4000 Security architecture prototyping

- Based on FPGAs
- Partial modelbased code generation
- Code validation

WP5000 Validation and demonstration

 in a lab-car with safety applications based on car-to-X communication

 $(\mathsf{Kick}\text{-}\mathsf{off})$ 

WP1000 Dissemination and external interfaces

- Open specifications
- Liaison with related initiatives in the field of e-safety
- Workshop to present project results to the public and to instigate a wider review



- EVITA project overview
- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary

# **Possible attack goals**



- To gain personal advantages
- To gain reputation as a hacker
- To harm others

# **Fraunhofer**

# Summary of security requirements on automotive on-board networks

- Integrity of hardware security module
  - Tamper prevention/detection
- Integrity and authenticity of on-board software and data
  - Unauthorized alteration must be infeasible / detectable.
- Integrity and authenticity of on-board communication
  - Unauthorized modification must be detectable by the receiver.
- Confidentiality of in-vehicular communication and data
  - Unauthorized disclosure of confidential data must be infeasible.
- Proof of platform integrity and authenticity to other entities
  - Remote attestation of integrity and authenticity of the platform configuration
- Access Control to in-vehicle data and resources
  - Enable availability and well-defined access to all data and resources



- EVITA project overview
- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary



# General structure of EVITA hardware security modules



- Hardware security module (HSM) with a programmable secure core for flexibility
- Integrated into the same chip as the application CPU
- Tamper-resistant security anchor
  - Secure storage of cryptographic keys and certificates
- Acceleration of cryptographic functions

# **EVITA** hardware deployment architecture



# **EVITA HSM in every ECU, but 3 different HSM classes to meet**

- Different cost constraints
- Different security **protection** requirements
- Different (security) functional requirements



#### **EVITA HSM classes**



• Full HSM: With asymmetric cryptographic engine,

for protecting external communication

• Medium HSM: Without asymmetric cryptographic engine,

for protecting internal ECUs

• Light HSM: Only symmetric cryptographic engine,

for sensors and actuators

#### **EVITA software architecture**



- Layered architecture:
  - Low-level drivers for interaction between microcontroller and HSM
  - Security library
    - Using the low-level driver to provide the required security functionality
    - API to upper layers
    - Cryptographic **protocols**, tailored to constraints of on-board networks
- Using AUTOSAR v3.0



- EVITA project overview
- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary

## **Security hardware prototype**



- Consists of
  - Off-the-shelve microcontroller
  - Extended with an HSM, prototyped on an FPGA
  - connected via a standardized interface for inter-chip communication (SPI)
- Next HSM prototype may be on an ASIC
- Future solution should have the HSM integrated onto the microcontroller chip.



# **Prototype-based demonstration**



- Desktop demonstration showcase
- Real-world vehicle demonstration showcase





- EVITA project overview
- Security challenges
- Security toolbox
- Prototype and demonstration
- Summary

### **Summary**



- EVITA provides security toolbox for on-board networks
- EVITA HSMs
  - provide a reliable security anchor
  - apply ideas from Trusted Computing (e.g., authenticated boot)
  - accelerate cryptographic functions (e.g., ECC, AES, WHIRLPOOL, RNG)
  - tamper-protection via on-chip integration (+ further measures)

## **Thank you! Questions?**





Fraunhofer Institute for Secure Information Technology Department Secure Mobile Systems Rheinstraße 75 D-64295 Darmstadt

Dr.-Ing. Olaf Henniger

Telefon: +49 6151 869 264

Fax: +49 6151 869 224

E-Mail: olaf.henniger@sit.fraunhofer.de

Internet: <a href="http://www.sit.fraunhofer.de">http://www.sit.fraunhofer.de</a>